Bolin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9583893/publications.pdf

Version: 2024-02-01

430874 477307 30 842 18 29 citations h-index g-index papers 31 31 31 430 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: Importance of pyridinic-N synergism. Applied Catalysis B: Environmental, 2020, 272, 118944.	20.2	84
2	Stabilizing Au(III) in supported-ionic-liquid-phase (SILP) catalyst using CuCl2 via a redox mechanism. Applied Catalysis B: Environmental, 2017, 206, 175-183.	20.2	80
3	Supported ionic liquid-palladium catalyst for the highly effective hydrochlorination of acetylene. Chemical Engineering Journal, 2019, 360, 38-46.	12.7	71
4	Nitrogen- and phosphorus-codoped carbon-based catalyst for acetylene hydrochlorination. Journal of Catalysis, 2019, 373, 240-249.	6.2	62
5	Alternative solvent to aqua regia to activate Au/AC catalysts for the hydrochlorination of acetylene. Journal of Catalysis, 2017, 350, 149-158.	6.2	61
6	Carbon-supported perovskite-like CsCuCl ₃ nanoparticles: a highly active and cost-effective heterogeneous catalyst for the hydrochlorination of acetylene to vinyl chloride. Catalysis Science and Technology, 2018, 8, 2901-2908.	4.1	52
7	Selective hydrogenation of acetylene over Pd-Sn catalyst: Identification of Pd2Sn intermetallic alloy and crystal plane-dependent performance. Applied Catalysis B: Environmental, 2020, 279, 119348.	20.2	42
8	Towards a greener approach for the preparation of highly active gold/carbon catalyst for the hydrochlorination of ethyne. Journal of Catalysis, 2018, 365, 153-162.	6.2	35
9	Electron-deficient Cu site catalyzed acetylene hydrochlorination. Green Energy and Environment, 2023, 8, 1128-1140.	8.7	31
10	Carbon with Surfaceâ€Enriched Nitrogen and Sulfur Supported Au Catalysts for Acetylene Hydrochlorination. ChemCatChem, 2019, 11, 1002-1009.	3.7	28
11	Stabilizing supported gold catalysts in acetylene hydrochlorination by constructing an acetylene–deficient reaction phase. Green Energy and Environment, 2021, 6, 9-14.	8.7	27
12	Acetylene hydrochlorination over supported ionic liquid phase (SILP) gold-based catalyst: Stabilization of cationic Au species via chemical activation of hydrogen chloride and corresponding mechanisms. Chinese Journal of Catalysis, 2021, 42, 334-346.	14.0	27
13	Constructing and controlling ruthenium active phases for acetylene hydrochlorination. Chemical Communications, 2020, 56, 10722-10725.	4.1	25
14	Controllable Synthesis of Vacancy-Defect Cu Site and Its Catalysis for the Manufacture of Vinyl Chloride Monomer. ACS Catalysis, 2021, 11, 11016-11028.	11.2	25
15	Zeolite Supported Ionic Liquid Catalysts for the Hydrochlorination of Acetylene. Catalysts, 2018, 8, 351.	3.5	22
16	An ultra-high H ₂ S-resistant gold-based imidazolium ionic liquid catalyst for acetylene hydrochlorination. New Journal of Chemistry, 2019, 43, 12767-12775.	2.8	20
17	Design strategies for the development of a Pd-based acetylene hydrochlorination catalyst: improvement of catalyst stability by nitrogen-containing ligands. RSC Advances, 2019, 9, 21557-21563.	3.6	19
18	Boron-doped carbon nanodots dispersed on graphitic carbon as high-performance catalysts for acetylene hydrochlorination. Chemical Communications, 2020, 56, 5174-5177.	4.1	19

#	Article	IF	CITATION
19	Interactions between atomically dispersed copper and phosphorous species are key for the hydrochlorination of acetylene. Communications Chemistry, 2022, 5, .	4.5	18
20	Synergy between Ionic Liquids and CuCl2 in Gas–Liquid Phase Reactions of Acetylene Hydrochlorination. Catalysts, 2019, 9, 504.	3.5	13
21	Adsorption Behavior and Electron Structure Engineering of Pd-Based Catalysts for Acetylene Hydrochlorination. Catalysts, 2020, 10, 24.	3.5	13
22	An Alternative Carbon Carrier in Green Preparation of Efficient Gold/Carbon Catalyst for Acetylene Hydrochlorination. ChemCatChem, 2019, 11, 3318-3326.	3.7	11
23	Synergistic effect of two action sites on a nitrogen-doped carbon catalyst towards acetylene hydrochlorination. Physical Chemistry Chemical Physics, 2020, 22, 20995-20999.	2.8	11
24	Nature of HCl oxidation Au anomalies and activation of non-carbon-material-supported Au catalyst. Journal of Catalysis, 2021, 404, 198-203.	6.2	11
25	Mesoporous carbon nitride as a basic catalyst in dehydrochlorination of 1,1,2-trichloroethane into 1,1-dichloroethene. RSC Advances, 2015, 5, 103829-103833.	3.6	9
26	Highly Active AuCu-Based Catalysts for Acetylene Hydrochlorination Prepared Using Organic Aqua Regia. Materials, 2019, 12, 1310.	2.9	8
27	Regulation of the liquid–solid interface of Cs catalysts for the synthesis of 1,1-Dichloroethylene from 1,1,2-Trichloroethane. Applied Surface Science, 2022, 599, 154033.	6.1	6
28	Insight into the dispersion behavior of 1-butyl-3-methylimiazolium chloride confined in nanoscale pores of carbon materials. RSC Advances, 2018, 8, 24094-24100.	3.6	5
29	Carbon with Surfaceâ€Enriched Nitrogen and Sulfur Supported Au Catalysts for Acetylene Hydrochlorination. ChemCatChem, 2019, 11, 898-898.	3.7	4
30	Non-metallic carbon-based catalysts for acetylene hydrochlorination: The effect of graphitization degree of carbonaceous material. Catalysis Communications, 2022, 167, 106458.	3.3	3