Junhuil Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9583889/publications.pdf

Version: 2024-02-01

1307594 1474206 9 468 7 9 citations g-index h-index papers 9 9 9 435 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons. Journal of CO2 Utilization, 2017, 21, 100-107.	6.8	100
2	Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst. Journal of CO2 Utilization, 2019, 29, 140-145.	6.8	96
3	Selective CO ₂ Hydrogenation to Hydrocarbons on Cu-Promoted Fe-Based Catalysts: Dependence on Cu–Fe Interaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 10182-10190.	6.7	95
4	Direct Transformation of Carbon Dioxide to Value-Added Hydrocarbons by Physical Mixtures of Fe ₅ C ₂ and K-Modified Al ₂ O ₃ . Industrial & Engineering Chemistry Research, 2018, 57, 9120-9126.	3.7	56
5	Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons. Catalysis Today, 2021, 371, 162-170.	4.4	50
6	Overcoating the Surface of Fe-Based Catalyst with ZnO and Nitrogen-Doped Carbon toward High Selectivity of Light Olefins in CO ₂ Hydrogenation. Industrial & Discrete Engineering Chemistry Research, 2019, 58, 4017-4023.	3.7	35
7	Selective Hydrogenation of CO ₂ to Hydrocarbons: Effects of Fe ₃ O ₄ Particle Size on Reduction, Carburization, and Catalytic Performance. Energy & Description of the En	5.1	27
8	Enhanced Catalytic Performance of Fenton-Like Reaction: Dependence on Meso-Structure and Cu-Ce Interaction. Catalysis Letters, 2022, 152, 2947-2955.	2.6	5
9	Electrochemical Degradation of 4-Fluorophenol in a Moveable Pd-Polypyrrole Catalyst-Mediated Reactor. Electrocatalysis, 2022, 13, 81-90.	3.0	4