ClÃjudia Lobato da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9583842/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dimethyloxalylglycine, a small molecule, synergistically increases the homing and angiogenic properties of human mesenchymal stromal cells when cultured as 3D spheroids. Biotechnology Journal, 2021, 16, e2000389.	3.5	16
2	Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix. Polymers, 2021, 13, 1095.	4.5	50
3	Minicircleâ€based expression of vascular endothelial growth factor in mesenchymal stromal cells from diverse human tissues. Journal of Gene Medicine, 2021, 23, e3342.	2.8	2
4	Influence of the mesenchymal stromal cell source on the hematopoietic supportive capacity of umbilical cord blood-derived CD34+-enriched cells. Stem Cell Research and Therapy, 2021, 12, 399.	5.5	7
5	Mesenchymal Stromal Cells (MSCs): A Promising Tool for Cell-Based Angiogenic Therapy. Current Gene Therapy, 2021, 21, 382-405.	2.0	9
6	Impact of Donor Age on the Osteogenic Supportive Capacity of Mesenchymal Stromal Cell-Derived Extracellular Matrix. Frontiers in Cell and Developmental Biology, 2021, 9, 747521.	3.7	26
7	Extruded Bioreactor Perfusion Culture Supports the Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells in 3D Porous Poly(É›â€Caprolactone) Scaffolds. Biotechnology Journal, 2020, 15, e1900078.	3.5	7
8	Extracellular matrix decorated polycaprolactone scaffolds for improved mesenchymal stem/stromal cell osteogenesis towards a patientâ€ŧailored bone tissue engineering approach. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2153-2166.	3.4	52
9	Glycosaminoglycan disaccharide compositional analysis of cell-derived extracellular matrices using liquid chromatography-tandem mass spectrometry. Methods in Cell Biology, 2020, 156, 85-106.	1.1	1
10	Scalable Production of Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Under Serum-/Xeno-Free Conditions in a Microcarrier-Based Bioreactor Culture System. Frontiers in Cell and Developmental Biology, 2020, 8, 553444.	3.7	78
11	Tailored Cytokine Optimization for ex vivo Culture Platforms Targeting the Expansion of Human Hematopoietic Stem/Progenitor Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 573282.	4.1	9
12	Stem Cell Bioprocessing and Manufacturing. Bioengineering, 2020, 7, 84.	3.5	2
13	Copper-64 Chloride Exhibits Therapeutic Potential in Three-Dimensional Cellular Models of Prostate Cancer. Frontiers in Molecular Biosciences, 2020, 7, 609172.	3.5	10
14	Scalable Manufacturing of Human Hematopoietic Stem/Progenitor Cells Exploiting a Co-culture Platform with Mesenchymal Stromal Cells. Methods in Molecular Biology, 2020, 2286, 107-120.	0.9	0
15	Loss and rescue of osteocalcin and osteopontin modulate osteogenic and angiogenic features of mesenchymal stem/stromal cells. Journal of Cellular Physiology, 2020, 235, 7496-7515.	4.1	18
16	Conditioned Medium From Azurin-Expressing Human Mesenchymal Stromal Cells Demonstrates Antitumor Activity Against Breast and Lung Cancer Cell Lines. Frontiers in Cell and Developmental Biology, 2020, 8, 471.	3.7	10
17	Modulation of the in vitro angiogenic potential of human mesenchymal stromal cells from different tissue sources. Journal of Cellular Physiology, 2020, 235, 7224-7238.	4.1	16
18	Chondrogenic differentiation of mesenchymal stem/stromal cells on 3D porous poly (ε-caprolactone) scaffolds: Effects of material alkaline treatment and chondroitin sulfate supplementation. Journal of Bioscience and Bioengineering, 2020, 129, 756-764.	2.2	27

#	Article	IF	CITATIONS
19	Mesenchymal stromal cells induce regulatory T cells via epigenetic conversion of human conventional CD4 T cells in vitro. Stem Cells, 2020, 38, 1007-1019.	3.2	36
20	Successful Use of Human AB Serum to Support the Expansion of Adipose Tissue-Derived Mesenchymal Stem/Stromal Cell in a Microcarrier-Based Platform. Frontiers in Bioengineering and Biotechnology, 2020, 8, 307.	4.1	12
21	Successful isolation and ex vivo expansion of human mesenchymal stem/stromal cells obtained from different synovial tissueâ€derived (biopsy) samples. Journal of Cellular Physiology, 2019, 234, 3973-3984.	4.1	16
22	Mobileâ€Phase Modulators as Salt Tolerance Enhancers in Phenylboronate Chromatography: Thermodynamic Evaluation of the Mechanisms Underlying the Adsorption of Monoclonal Antibodies. Biotechnology Journal, 2019, 14, e1800586.	3.5	0
23	RNAi as a tool to inhibit the angiogenic potential of human Mesenchymal Stem/Stromal Cells in malignancy*. , 2019, , .		0
24	Impact of the human mesenchymal stem cells donor on conditional medium composition. , 2019, , .		0
25	Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering. Materials Science and Engineering C, 2019, 99, 479-490.	7.3	89
26	Cultured cellâ€derived extracellular matrices to enhance the osteogenic differentiation and angiogenic properties of human mesenchymal stem/stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1544-1558.	2.7	45
27	Changes in N-acetyltransferase 8 in kidney tubular cell: injury, recovery and mesenchymal stromal cell-based therapy. , 2019, , .		1
28	Scalable Manufacturing of Human Mesenchymal Stromal Cells in the Verticalâ€Wheel Bioreactor System: An Experimental and Economic Approach. Biotechnology Journal, 2019, 14, e1800716.	3.5	42
29	Addressing the Manufacturing Challenges of Cell-Based Therapies. Advances in Biochemical Engineering/Biotechnology, 2019, 171, 225-278.	1.1	14
30	Engineering of Human Mesenchymal Stem/Stromal Cells with Vascular Endothelial Growth Factor–Encoding Minicircles for Angiogenic <i>Ex Vivo</i> Gene Therapy. Human Gene Therapy, 2019, 30, 316-329.	2.7	16
31	Synergistic effect of extracellularly supplemented osteopontin and osteocalcin on stem cell proliferation, osteogenic differentiation, and angiogenic properties. Journal of Cellular Biochemistry, 2019, 120, 6555-6569.	2.6	40
32	Hematopoietic Niche – Exploring Biomimetic Cues to Improve the Functionality of Hematopoietic Stem/Progenitor Cells. Biotechnology Journal, 2018, 13, 1700088.	3.5	23
33	A Fully-Closed and Automated Hollow Fiber Bioreactor for Clinical-Grade Manufacturing of Human Mesenchymal Stem/Stromal Cells. Stem Cell Reviews and Reports, 2018, 14, 141-143.	5.6	30
34	Scalable Expansion of Mesenchymal Stem/Stromal Cells in Bioreactors: A Focus on Hydrodynamic Characterization. , 2018, , .		2
35	Biomimetic matrices for rapidly forming mineralized bone tissue based on stem cell-mediated osteogenesis. Scientific Reports, 2018, 8, 14388.	3.3	46
36	Three-Dimensional Co-culture of Human Hematopoietic Stem/Progenitor Cells and Mesenchymal Stem/Stromal Cells in a Biomimetic Hematopoietic Niche Microenvironment. Methods in Molecular Biology, 2018, 2002, 101-119.	0.9	4

#	Article	IF	CITATIONS
37	Thermodynamics of the adsorption of monoclonal antibodies in phenylboronate chromatography: Affinity versus multimodal interactions. Journal of Chromatography A, 2018, 1569, 118-127.	3.7	6
38	Bioreactors for the Cultivation of Hematopoietic Stem and Progenitor Cells. , 2018, , 165-200.		0
39	Epigenetic Profile of Treg-like Cells Induced By Mesenchymal Stem Cells in Vitro Resembles That of Natural Treg. Blood, 2018, 132, 2578-2578.	1.4	Ο
40	Acellular Urethra Bioscaffold: Decellularization of Whole Urethras for Tissue Engineering Applications. Scientific Reports, 2017, 7, 41934.	3.3	50
41	Mid-infrared spectroscopy: A groundbreaking tool for monitoring mammalian cells processes. , 2017, ,		Ο
42	Tridimensional configurations of human mesenchymal stem/stromal cells to enhance cell paracrine potential towards wound healing processes. Journal of Biotechnology, 2017, 262, 28-39.	3.8	44
43	Integrated culture platform based on a human platelet lysate supplement for the isolation and scalable manufacturing of umbilical cord matrix-derived mesenchymal stem/stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1630-1640.	2.7	48
44	Monitoring the <i>exâ€vivo</i> expansion of human mesenchymal stem/stromal cells in xenoâ€free microcarrierâ€based reactor systems by <scp>MIR</scp> spectroscopy. Biotechnology Progress, 2016, 32, 447-455.	2.6	11
45	Clinical-Grade Manufacturing of Therapeutic Human Mesenchymal Stem/Stromal Cells in Microcarrier-Based Culture Systems. Methods in Molecular Biology, 2016, 1416, 375-388.	0.9	12
46	Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells. Journal of Biotechnology, 2016, 236, 88-109.	3.8	64
47	Computational modeling of megakaryocytic differentiation of umbilical cord blood-derived stem/progenitor cells. Computers and Chemical Engineering, 2016, 94, 117-127.	3.8	1
48	Microcarrier Culture Systems for Stem Cell Manufacturing. , 2016, , 77-104.		10
49	Delta One T Cells for Immunotherapy of Chronic Lymphocytic Leukemia: Clinical-Grade Expansion/Differentiation and Preclinical Proof of Concept. Clinical Cancer Research, 2016, 22, 5795-5804.	7.0	153
50	Stirred tank bioreactor culture combined with serum…xenogeneicâ€free culture medium enables an efficient expansion of umbilical cordâ€derived mesenchymal stem/stromal cells. Biotechnology Journal, 2016, 11, 1048-1059.	3.5	56
51	Potential application of gelatin scaffolds prepared throughin situgas foaming in skin tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 315-322.	3.4	20
52	Extracellular matrix microarrays to study inductive signaling for endoderm specification. Acta Biomaterialia, 2016, 34, 30-40.	8.3	24
53	A xenoâ€free microcarrierâ€based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue. Biotechnology Journal, 2015, 10, 1235-1247.	3.5	55
54	Combination of 3D Extruded-based Poly (É›-caprolactone) Scaffolds with Mesenchymal Stem/Stromal Cells: Strategy Optimization. Procedia Engineering, 2015, 110, 122-127.	1.2	7

#	Article	IF	CITATIONS
55	Developing a co-culture system for effective megakaryo/thrombopoiesis from umbilical cord blood hematopoietic stem/progenitor cells. Cytotherapy, 2015, 17, 428-442.	0.7	10
56	A human platelet lysate-based culture supplement for the successful isolation and scalable expansion of umbilical cord matrix-derived mesenchymal stem/stromal cells. Cytotherapy, 2015, 17, S43.	0.7	0
57	Scaling up the exÂvivo expansion of human circulating CD34+progenitor cells with upregulation of angiogenic and anti-inflammatory potential. Cytotherapy, 2015, 17, 1777-1784.	0.7	6
58	Stem cell bioengineering strategies to widen the therapeutic applications of haematopoietic stem/progenitor cells from umbilical cord blood. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 988-1003.	2.7	10
59	<i>Ex vivo</i> expansion of cord blood haematopoietic stem/progenitor cells under physiological oxygen tensions: clear-cut effects on cell proliferation, differentiation and metabolism. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1172-1181.	2.7	21
60	Gelatin porous scaffolds fabricated using a modified gas foaming technique: Characterisation and cytotoxicity assessment. Materials Science and Engineering C, 2015, 48, 63-70.	7.3	73
61	Intracoronary Delivery of Human Mesenchymal/Stromal Stem Cells: Insights from Coronary Microcirculation Invasive Assessment in a Swine Model. PLoS ONE, 2015, 10, e0139870.	2.5	16
62	Evaluation of gene delivery strategies to efficiently overexpress functional HLA-G on human bone marrow stromal cells. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14041.	4.1	18
63	Differentiation of Human Umbilical Cord Matrix Mesenchymal Stem Cells into Neural-Like Progenitor Cells and Maturation into an Oligodendroglial-Like Lineage. PLoS ONE, 2014, 9, e111059.	2.5	57
64	P358Safety of intracoronary delivery of mesenchymal/stromal stem cells: insights from coronary microcirculation invasive assessment:. Cardiovascular Research, 2014, 103, S65.3-S65.	3.8	0
65	Maximizing mouse embryonic stem cell production in a stirred tank reactor by controlling dissolved oxygen concentration and continuous perfusion operation. Biochemical Engineering Journal, 2014, 82, 81-90.	3.6	17
66	A xenogeneicâ€free bioreactor system for the clinicalâ€scale expansion of human mesenchymal stem/stromal cells. Biotechnology and Bioengineering, 2014, 111, 1116-1127.	3.3	129
67	Proliferation extent of CD34+ cells as a key parameter to maximize megakaryocytic differentiation of umbilical cord blood-derived hematopoietic stem/progenitor cells in a two-stage culture protocol. Biotechnology Reports (Amsterdam, Netherlands), 2014, 4, 50-55.	4.4	8
68	Scalable Ex Vivo Expansion of Human Mesenchymal Stem/Stromal Cells in Microcarrier-Based Stirred Culture Systems. Methods in Molecular Biology, 2014, 1283, 147-159.	0.9	17
69	In vitro assessment of three dimensional dense chitosan-based structures to be used as bioabsorbable implants. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40, 413-425.	3.1	17
70	Concise Review: Genomic Instability in Human Stem Cells: Current Status and Future Challenges. Stem Cells, 2014, 32, 2824-2832.	3.2	43
71	Polyhydroxyalkanoates: Waste glycerol upgrade into electrospun fibrous scaffolds for stem cells culture. International Journal of Biological Macromolecules, 2014, 71, 131-140.	7.5	29
72	Separation Technologies for Stem Cell Bioprocessing. Cell Engineering, 2014, , 157-181.	0.4	2

#	Article	IF	CITATIONS
73	Direct Head-To-Head Comparison of Cationic Liposome-Mediated Gene Delivery to Mesenchymal Stem/Stromal Cells of Different Human Sources: A Comprehensive Study. Human Gene Therapy Methods, 2013, 24, 38-48.	2.1	24
74	Human mesenchymal stem cells from the umbilical cord matrix: Successful isolation and ex vivo expansion using serumâ€∤xenoâ€free culture media. Biotechnology Journal, 2013, 8, 448-458.	3.5	60
75	Bioreactor design for clinicalâ€grade expansion of stem cells. Biotechnology Journal, 2013, 8, 644-654.	3.5	98
76	Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Research and Therapy, 2013, 4, 125.	5.5	213
77	Study of the effects of electrospun poly(epslon-caprolactone)/gelatin matrices on human mesenchymal stem cell culture. , 2013, , .		0
78	An Appraisal of Human Mitochondrial DNA Instability: New Insights into the Role of Non-Canonical DNA Structures and Sequence Motifs. PLoS ONE, 2013, 8, e59907.	2.5	25
79	Separation technologies for stem cell bioprocessing. Biotechnology and Bioengineering, 2012, 109, 2699-2709.	3.3	46
80	Impact of hypoxia and long-term cultivation on the genomic stability and mitochondrial performance of ex vivo expanded human stem/stromal cells. Stem Cell Research, 2012, 9, 225-236.	0.7	51
81	Plasmid DNA Size Does Affect Nonviral Gene Delivery Efficiency in Stem Cells. Cellular Reprogramming, 2012, 14, 130-137.	0.9	46
82	Human Mesenchymal Stem Cell Expression Program upon Extended Ex-Vivo Cultivation, as Revealed by 2-DE-Based Quantitative Proteomics. PLoS ONE, 2012, 7, e43523.	2.5	51
83	Mesenchymal Stem Cells For Cellular Therapies. , 2012, , 179-187.		Ο
84	An appraisal of genetic stability in human mesenchymal stem cells. , 2011, , .		0
85	Genetic engineering of stem cells by non-viral vectors. , 2011, , .		Ο
86	Design and operation of bioreactor systems for the expansion of pluripotent stem cell-derived neural stem cells. , 2011, , .		0
87	Ex-vivo expansion of hematopoietic stem cells from umbilical cord blood. , 2011, , .		Ο
88	Ex Vivo Expansion of Human Mesenchymal Stem Cells on Microcarriers. Methods in Molecular Biology, 2011, 698, 189-198.	0.9	31
89	Magnetoresistive chip cytometer. Lab on A Chip, 2011, 11, 2255.	6.0	64
90	Toward a Clinical-Grade Expansion of Mesenchymal Stem Cells from Human Sources: A Microcarrier-Based Culture System Under Xeno-Free Conditions. Tissue Engineering - Part C: Methods, 2011, 17, 1201-1210.	2.1	209

CLÃ;UDIA LOBATO DA SILVA

#	Article	IF	CITATIONS
91	Stem cell cultivation in bioreactors. Biotechnology Advances, 2011, 29, 815-829.	11.7	183
92	A novel method for human hematopoietic stem/progenitor cell isolation from umbilical cord blood based on immunoaffinity aqueous two-phase partitioning. Biotechnology Letters, 2011, 33, 2373-2377.	2.2	34
93	Oxazolineâ€Based Antimicrobial Oligomers: Synthesis by CROP Using Supercritical CO ₂ . Macromolecular Bioscience, 2011, 11, 1128-1137.	4.1	32
94	Macromol. Biosci. 8/2011. Macromolecular Bioscience, 2011, 11, .	4.1	0
95	Initial CD34 ⁺ cellâ€enrichment of cord blood determines hematopoietic stem/progenitor cell yield upon Ex vivo expansion. Journal of Cellular Biochemistry, 2011, 112, 1822-1831.	2.6	22
96	Scaleâ€up of mouse embryonic stem cell expansion in stirred bioreactors. Biotechnology Progress, 2011, 27, 1421-1432.	2.6	35
97	Microcarrier expansion of mouse embryonic stem cellâ€derived neural stem cells in stirred bioreactors. Biotechnology and Applied Biochemistry, 2011, 58, 231-242.	3.1	28
98	Gene delivery to human bone marrow mesenchymal stem cells by microporation. Journal of Biotechnology, 2011, 151, 130-136.	3.8	36
99	Tailoring thermoresponsive microbeads in supercritical carbon dioxide for biomedical applications. Journal of Supercritical Fluids, 2011, 56, 292-298.	3.2	14
100	Spintronic chip cytometer. Journal of Applied Physics, 2011, 109, 07B311.	2.5	3
101	Effect of hypoxia on proliferation and neural commitment of embryonic stem cells at different stages of pluripotency. , 2011, , .		1
102	Large-Scale Expansion of Mouse Embryonic Stem Cells on Microcarriers. Methods in Molecular Biology, 2011, 690, 121-134.	0.9	4
103	Ex vivo expansion of human mesenchymal stem cells: A more effective cell proliferation kinetics and metabolism under hypoxia. Journal of Cellular Physiology, 2010, 223, 27-35.	4.1	252
104	Kinetic and metabolic analysis of mouse embryonic stem cell expansion under serum-free conditions. Biotechnology Letters, 2010, 32, 171-179.	2.2	24
105	Different stages of pluripotency determine distinct patterns of proliferation, metabolism, and lineage commitment of embryonic stem cells under hypoxia. Stem Cell Research, 2010, 5, 76-89.	0.7	42
106	A quantitative method to evaluate mesenchymal stem cell lipofection using realâ€ŧime PCR. Biotechnology Progress, 2010, 26, 1501-1504.	2.6	10
107	Hypoxia enhances proliferation of mouse embryonic stem cellâ€derived neural stem cells. Biotechnology and Bioengineering, 2010, 106, 260-270.	3.3	36
108	Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. Journal of Biotechnology, 2010, 146, 194-197.	3.8	158

ClÃiudia Lobato da Silva

#	Article	IF	CITATIONS
109	Dynamic cell-cell interactions between cord blood haematopoietic progenitors and the cellular niche are essential for the expansion of CD34 ⁺ , CD34 ⁺ CD38 ^{â[°]} and early lymphoid CD7 ⁺ cells. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 149-158.	2.7	37
110	Nonviral Gene Delivery to Mesenchymal Stem Cells Using Cationic Liposomes for Gene and Cell Therapy. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-12.	3.0	81
111	Systematic delineation of optimal cytokine concentrations to expand hematopoietic stem/progenitor cells in co-culture with mesenchymal stem cells. Molecular BioSystems, 2010, 6, 1207.	2.9	48
112	Differences amid bone marrow and cord blood hematopoietic stem/progenitor cell division kinetics. Journal of Cellular Physiology, 2009, 220, 102-111.	4.1	43
113	Supercritical CO2 generating chitosan devices with controlled morphology. Potential application for drug delivery and mesenchymal stem cell culture. Journal of Supercritical Fluids, 2009, 48, 269-277.	3.2	62
114	A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications. Surface and Coatings Technology, 2009, 203, 3701-3707.	4.8	182
115	Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system. Journal of Biotechnology, 2007, 132, 227-236.	3.8	145
116	Kinetic Analysis of the ex vivo Expansion of Human Hematopoietic Stem/Progenitor Cells. Biotechnology Letters, 2006, 28, 335-340.	2.2	8
117	A Stro-1+ human universal stromal feeder layer to expand/maintain human bone marrow hematopoietic stem/progenitor cells in a serum-free culture system. Experimental Hematology, 2006, 34, 1353-1359.	0.4	60
118	A human stromal-based serum-free culture system supports the ex vivo expansion/maintenance of bone marrow and cord blood hematopoietic stem/progenitor cells. Experimental Hematology, 2005, 33, 828-835.	0.4	109
119	Hematopoietic stem cells: from the bone to the bioreactor. Trends in Biotechnology, 2003, 21, 233-240.	9.3	119