Avijit Chakrabartty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/958296/publications.pdf

Version: 2024-02-01

90 papers 7,611 citations

42 h-index 51492 86 g-index

96 all docs 96 docs citations

96 times ranked 8113 citing authors

#	Article	IF	Citations
1	Helix propensities of the amino acids measured in alanineâ€based peptides without helixâ€stabilizing sideâ€chain interactions. Protein Science, 1994, 3, 843-852.	3.1	572
2	Stability of α-Helices. Advances in Protein Chemistry, 1995, 46, 141-176.	4.4	339
3	Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry, 1993, 32, 5560-5565.	1.2	334
4	Large differences in the helix propensities of alanine and glycine. Nature, 1991, 351, 586-588.	13.7	325
5	Membrane Disruption by Alzheimer \hat{l}^2 -Amyloid Peptides Mediated through Specific Binding to Either Phospholipids or Gangliosides. Journal of Biological Chemistry, 1996, 271, 26482-26489.	1.6	307
6	Monomeric Cu,Zn-superoxide Dismutase Is a Common Misfolding Intermediate in the Oxidation Models of Sporadic and Familial Amyotrophic Lateral Sclerosis. Journal of Biological Chemistry, 2004, 279, 15499-15504.	1.6	296
7	Oxidation-induced Misfolding and Aggregation of Superoxide Dismutase and Its Implications for Amyotrophic Lateral Sclerosis. Journal of Biological Chemistry, 2002, 277, 47551-47556.	1.6	279
8	Helix propagation and Nâ€cap propensities of the amino acids measured in alanineâ€based peptides in 40 volume percent trifluoroethanol. Protein Science, 1996, 5, 2623-2637.	3.1	256
9	A prion protein epitope selective for the pathologically misfolded conformation. Nature Medicine, 2003, 9, 893-899.	15.2	252
10	Manipulating the Amyloid- \hat{l}^2 Aggregation Pathway with Chemical Chaperones. Journal of Biological Chemistry, 1999, 274, 32970-32974.	1.6	238
11	Structural studies of soluble oligomers of the alzheimer β-amyloid peptide. Journal of Molecular Biology, 2000, 297, 73-87.	2.0	217
12	An immunological epitope selective for pathological monomer-misfolded SOD1 in ALS. Nature Medicine, 2007, 13, 754-759.	15.2	199
13	Characterization of the Interactions of Alzheimer beta-Amyloid Peptides with Phospholipid Membranes. FEBS Journal, 1997, 245, 355-363.	0.2	189
14	Determination of Free Energies of N-Capping in .alphaHelixes by Modification of the Lifson-Roig Helix-Coil Theory To Include N- and C-Capping. Biochemistry, 1994, 33, 3396-3403.	1.2	180
15	Structure, folding, and misfolding of Cu,Zn superoxide dismutase in amyotrophic lateral sclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 1025-1037.	1.8	178
16	Lipopeptide detergents designed for the structural study of membrane proteins. Nature Biotechnology, 2003, 21, 171-176.	9.4	174
17	Structural Transitions Associated with the Interaction of Alzheimer \hat{l}^2 -Amyloid Peptides with Gangliosides. Journal of Biological Chemistry, 1998, 273, 4506-4515.	1.6	173
18	Amyotrophic lateral sclerosis is a non-amyloid disease in which extensive misfolding of SOD1 is unique to the familial form. Acta Neuropathologica, 2010, 119, 335-344.	3.9	171

#	Article	IF	CITATIONS
19	Characterization of Segments from the Central Region of BRCA1: An Intrinsically Disordered Scaffold for Multiple Protein–Protein and Protein–DNA Interactions?. Journal of Molecular Biology, 2005, 345, 275-287.	2.0	157
20	Autoinhibition of the Kit Receptor Tyrosine Kinase by the Cytosolic Juxtamembrane Region. Molecular and Cellular Biology, 2003, 23, 3067-3078.	1.1	151
21	The effect of enhanced alpha-helicity on the activity of a winter flounder antifreeze polypeptide. FEBS Journal, 1991, 202, 1057-1063.	0.2	138
22	Adaptor Protein Self-Assembly Drives the Control of a Cullin-RING Ubiquitin Ligase. Structure, 2012, 20, 1141-1153.	1.6	127
23	Prion disease susceptibility is affected by \hat{l}^2 -structure folding propensity and local side-chain interactions in PrP. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19808-19813.	3.3	119
24	The molecular interaction of human salivary histatins with polyphenolic compounds. FEBS Journal, 2001, 268, 4384-4397.	0.2	115
25	Alternate Aggregation Pathways of the Alzheimer β-Amyloid Peptide: Aβ Association Kinetics at Endosomal pH. Journal of Molecular Biology, 2003, 325, 743-757.	2.0	97
26	Targeting of Monomer/Misfolded SOD1 as a Therapeutic Strategy for Amyotrophic Lateral Sclerosis. Journal of Neuroscience, 2012, 32, 8791-8799.	1.7	87
27	Hyperactive Antifreeze Protein from Winter Flounder Is a Very Long Rod-like Dimer of α-Helices*. Journal of Biological Chemistry, 2005, 280, 17920-17929.	1.6	73
28	Dimerization of the transmembrane domain of amyloid precursor proteins and familial Alzheimer's disease mutants. BMC Neuroscience, 2008, 9, 17.	0.8	73
29	Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death. Acta Neuropathologica, 2015, 130, 49-61.	3.9	71
30	Alternate Aggregation Pathways of the Alzheimer \hat{l}^2 -Amyloid Peptide. Journal of Biological Chemistry, 2000, 275, 36436-36440.	1.6	69
31	Protein misfolding in the lateâ€onset neurodegenerative diseases: Common themes and the unique case of amyotrophic lateral sclerosis. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1285-1303.	1.5	69
32	Novel conformation-specific monoclonal antibodies against amyloidogenic forms of transthyretin. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2016, 23, 86-97.	1.4	69
33	Phase to Phase with TDP-43. Biochemistry, 2017, 56, 809-823.	1.2	68
34	CCM3/PDCD10 Heterodimerizes with Germinal Center Kinase III (GCKIII) Proteins Using a Mechanism Analogous to CCM3 Homodimerization. Journal of Biological Chemistry, 2011, 286, 25056-25064.	1.6	67
35	"Structural characterization of the minimal segment of TDP-43 competent for aggregation― Archives of Biochemistry and Biophysics, 2014, 545, 53-62.	1.4	67
36	Transthyretin amyloidosis: an under-recognized neuropathy and cardiomyopathy. Clinical Science, 2017, 131, 395-409.	1.8	66

3

#	Article	IF	CITATIONS
37	Fibrillogenesis of Alzheimer A \hat{l}^2 peptides studied by fluorescence energy transfer. Journal of Molecular Biology, 1997, 269, 214-224.	2.0	64
38	Interaction of human and mouse AÎ ² peptides. Journal of Neurochemistry, 2004, 91, 1398-1403.	2.1	51
39	Charge substitution shows that repulsive electrostatic interactions impede the oligomerization of Alzheimer amyloid peptides. FEBS Letters, 2005, 579, 3574-3578.	1.3	51
40	Alzheimer \hat{l}^2 -amyloid peptides: Structures of amyloid fibrils and alternate aggregation products. Biopolymers, 2001, 60, 381.	1.2	50
41	Denaturational Stress Induces Formation of Zinc-Deficient Monomers of Cu,Zn Superoxide Dismutase: Implications for Pathogenesis in Amyotrophic Lateral Sclerosis. Journal of Molecular Biology, 2008, 383, 424-436.	2.0	44
42	Early Steps in Oxidation-Induced SOD1 Misfolding: Implications for Non-Amyloid Protein Aggregation in Familial ALS. Journal of Molecular Biology, 2012, 421, 631-652.	2.0	44
43	Variants of DsRed fluorescent protein: Development ofÂa copper sensor. Protein Science, 2006, 15, 2442-2447.	3.1	43
44	Amyloid \hat{I}^2 -protein (A \hat{I}^2) associated with lipid molecules: immunoreactivity distinct from that of soluble A \hat{I}^2 . FEBS Letters, 1997, 420, 43-46.	1.3	42
45	Co-incorporation of A \hat{I}^2 40 and A \hat{I}^2 42 to form mixed pre-fibrillar aggregates. FEBS Journal, 2003, 270, 654-663.	0.2	40
46	The PrP-like Protein Doppel Binds Copper. Journal of Biological Chemistry, 2003, 278, 8888-8896.	1.6	39
47	ALS-Causing SOD1 Mutations Promote Production of Copper-Deficient Misfolded Species. Journal of Molecular Biology, 2011, 409, 839-852.	2.0	39
48	Determining composition of micron-scale protein deposits in neurodegenerative disease by spatially targeted optical microproteomics. ELife, 2015, 4, .	2.8	38
49	Somatostatin binds to the human amyloid \hat{l}^2 peptide and favors the formation of distinct oligomers. ELife, 2017, 6, .	2.8	37
50	Binding of TDP-43 to the 3′UTR of Its Cognate mRNA Enhances Its Solubility. Biochemistry, 2014, 53, 5885-5894.	1.2	36
51	Alzheimer's AÎ ² 40 Studied by NMR at Low pH Reveals That Sodium 4,4-Dimethyl-4-silapentane-1-sulfonate (DSS) Binds and Promotes Î ² -Ball Oligomerization. Journal of Biological Chemistry, 2005, 280, 3675-3685.	1.6	34
52	Requirement of aggregation propensity of Alzheimer amyloid peptides for neuronal cell surface binding. BMC Neuroscience, 2007, 8, 29.	0.8	33
53	Electrostatic Repulsion Governs TDP-43 C-terminal Domain Aggregation. PLoS Biology, 2016, 14, e1002447.	2.6	33
54	Quercitrin and quercetin 3-Î ² -d-glucoside as chemical chaperones for the A4V SOD1 ALS-causing mutant. Protein Engineering, Design and Selection, 2017, 30, 431-440.	1.0	33

#	Article	IF	CITATIONS
55	Reversible assembly of helical filaments by de novo designed minimalist peptides. Biopolymers, 2005, 80, 26-33.	1.2	32
56	Primary structures of the alanine-rich antifreeze polypeptides from grubby sculpin, <i>Myoxocephalus aenaeus</i> . Canadian Journal of Zoology, 1988, 66, 403-408.	0.4	26
57	Species barriers for chronic wasting disease by in vitro conversion of prion protein. Biochemical and Biophysical Research Communications, 2007, 364, 796-800.	1.0	26
58	Substoichiometric inhibition of transthyretin misfolding by immune-targeting sparsely populated misfolding intermediates: a potential diagnostic and therapeutic for TTR amyloidoses. Scientific Reports, 2016, 6, 25080.	1.6	26
59	Structural and functional characterization of KEOPS dimerization by Pcc1 and its role in t ⁶ A biosynthesis. Nucleic Acids Research, 2016, 44, 6971-6980.	6.5	26
60	Simple Elimination of Background Fluorescence in Formalin-Fixed Human Brain Tissue for Immunofluorescence Microscopy. Journal of Visualized Experiments, 2017, , .	0.2	26
61	Physiologically Important Electrolytes as Regulators of TDP-43 Aggregation and Droplet-Phase Behavior. Biochemistry, 2019, 58, 590-607.	1.2	24
62	Identification of stable helical bundles from a combinatorial library of amphipathic peptides. Biopolymers, 2004, 76, 244-257.	1.2	22
63	Relative and Regional Stabilities of the Hamster, Mouse, Rabbit, and Bovine Prion Proteins toward Urea Unfolding Assessed by Nuclear Magnetic Resonance and Circular Dichroism Spectroscopies. Biochemistry, 2011, 50, 7536-7545.	1.2	22
64	Equilibrium folding intermediates of a greek key \hat{l}^2 -barrel protein. Journal of Molecular Biology, 1998, 276, 669-681.	2.0	21
65	Two Distinct Conformations of $\hat{Al^2}$ Aggregates on the Surface of Living PC12 Cells. Biophysical Journal, 2009, 96, 4260-4267.	0.2	19
66	Calexcitin B Is a New Member of the Sarcoplasmic Calcium-binding Protein Family. Journal of Biological Chemistry, 2001, 276, 22529-22536.	1.6	17
67	Interplay of buried histidine protonation and protein stability in prion misfolding. Scientific Reports, 2017, 7, 882.	1.6	17
68	N-Terminal Helix-Cap in \hat{l}_{\pm} -Helix 2 Modulates \hat{l}^{2} -State Misfolding in Rabbit and Hamster Prion Proteins. PLoS ONE, 2013, 8, e63047.	1.1	17
69	Interactions of Alzheimer amyloid peptides with cultured cells and brain tissue, and their biological consequences. Biopolymers, 2004, 76, 4-14.	1.2	16
70	Wild-type Cu/Zn superoxide dismutase stabilizes mutant variants by heterodimerization. Neurobiology of Disease, 2014, 62, 479-488.	2.1	16
71	Getting specificity from simplicity in putative proteins from the prebiotic Earth. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14941-14946.	3.3	15
72	Cell Surface Binding and Internalization of Al^2Modulated by Degree of Aggregation. International Journal of Alzheimer's Disease, 2011, 2011, 1-13.	1.1	13

#	Article	IF	Citations
73	Conformational Coupling of Mg2+and Ca2+on the Three-State Folding of Calexcitin Bâ€. Biochemistry, 2003, 42, 5531-5539.	1.2	12
74	Cost-effective elimination of lipofuscin fluorescence from formalin-fixed brain tissue by white phosphor light emitting diode array. Biochemistry and Cell Biology, 2016, 94, 545-550.	0.9	12
75	Putative Oneâ€Pot Prebiotic Polypeptides with Ribonucleolytic Activity. Chemistry - A European Journal, 2010, 16, 5314-5323.	1.7	11
76	All or none fibrillogenesis of a prion peptide. FEBS Journal, 2001, 268, 4885-4891.	0.2	10
77	Conversion of A \hat{I}^2 42 into a Folded Soluble Native-like Protein using a Semi-random Library of Amphipathic Helices. Journal of Molecular Biology, 2010, 396, 1284-1294.	2.0	10
78	Probing Alzheimer amyloid peptide aggregation using a cell-free fluorescent protein refolding method. Biochemistry and Cell Biology, 2009, 87, 631-639.	0.9	9
79	Multiphoton ANS fluorescence microscopy as an in vivo sensor for protein misfolding stress. Cell Stress and Chaperones, 2011, 16, 549-561.	1.2	9
80	Progress in transthyretin fibrillogenesis research strengthens the amyloid hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14757-14759.	3.3	7
81	Analyzing complicated protein folding kinetics rapidly by analytical Laplace inversion using a Tikhonov regularization variant. Analytical Biochemistry, 2012, 421, 181-190.	1.1	7
82	An Arg-rich putative prebiotic protein is as stable as its Lys-rich variant. Archives of Biochemistry and Biophysics, 2012, 528, 118-126.	1.4	6
83	Structure of a simplified \hat{l}^2 -hairpin and its ATP complex. Archives of Biochemistry and Biophysics, 2013, 537, 62-71.	1.4	6
84	Conformation specificity and arene binding in a peptide composed only of Lys, Ile, Ala and Gly. European Biophysics Journal, 2012, 41, 63-72.	1.2	5
85	Nonpolar contributions to conformational specificity in assemblies of designed short helical peptides. Protein Science, 2000, 9, 1011-1023.	3.1	4
86	Alternate routes to conformational specificity in a Greek key \hat{l}^2 barrel protein. FEBS Journal, 2001, 268, 4653-4664.	0.2	2
87	NMR-driven secondary and tertiary structure model of Ca2+-loaded calexcitin. Biochemical and Biophysical Research Communications, 2006, 343, 520-524.	1.0	2
88	Protein Misfolding and Toxicity in Amyotrophic Lateral Sclerosis., 2012,, 257-288.		2
89	Reply to "Properties of a disease-specific prion probe― Nature Medicine, 2004, 10, 11-12.	15.2	1
90	Alzheimer \hat{I}^2 -amyloid peptides: Structures of amyloid fibrils and alternate aggregation products. , 2001, 60, 381.		1