List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/958263/publications.pdf Version: 2024-02-01

1	117625	168389	
3,884	34	53	
itations	h-index	g-index	
134	134	3655	
cs citations	times ranked	citing authors	
	3,884 itations 134 cs citations	3,884 itations A-index 134 cs citations 134 times ranked	3,8843453itationsh-indexg-index1341343655cs citationstimes rankedciting authors

ΠΟΝΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Optimization of fermentation medium and conditions for enhancing valinomycin production by <i>Streptomyces</i> sp. ZJUT-IFE-354. Preparative Biochemistry and Biotechnology, 2023, 53, 157-166.	1.9	4
2	Maleimide structure: a promising scaffold for the development of antimicrobial agents. Journal of Asian Natural Products Research, 2022, 24, 1-14.	1.4	12
3	Fundamentals and exploration of aggregation-induced emission molecules for amyloid protein aggregation. Journal of Materials Chemistry B, 2022, 10, 2280-2295.	5.8	20
4	A mechanistic survey of Alzheimer's disease. Biophysical Chemistry, 2022, 281, 106735.	2.8	34
5	A new strategy to reconcile amyloid crossâ€seeding and amyloid prevention in a binary system of αâ€synuclein fragmental peptide and <scp>hIAPP</scp> . Protein Science, 2022, 31, 485-497.	7.6	7
6	Efficient production of valinomycin by the soil bacterium, Streptomyces sp. ZJUT-IFE-354. 3 Biotech, 2022, 12, 2.	2.2	2
7	Versatile and Simple Strategy for Preparing Bilayer Hydrogels with Janus Characteristics. ACS Applied Materials & Interfaces, 2022, 14, 4579-4587.	8.0	12
8	Conformational-specific self-assembled peptides as dual-mode, multi-target inhibitors and detectors for different amyloid proteins. Journal of Materials Chemistry B, 2022, 10, 1754-1762.	5.8	6
9	Effect of External Magnetic Field on Bulk Heterojunction Polymer Solar Cells. Macromolecular Rapid Communications, 2022, , 2100933.	3.9	2
10	Ionic interaction-driven switchable bactericidal surfaces. Acta Biomaterialia, 2022, 142, 124-135.	8.3	6
11	Photo-switchable supramolecular comb-like polymer brush based on host–guest recognition for use as antimicrobial smart surface. Journal of Materials Chemistry B, 2022, 10, 3039-3047.	5.8	7
12	Conductive Adhesive and Antibacterial Zwitterionic Hydrogel Dressing for Therapy of Full-Thickness Skin Wounds. Frontiers in Bioengineering and Biotechnology, 2022, 10, 833887.	4.1	7
13	Origins of the Photocurrent Multiplication Effect in the Polythiopheneâ€Based Photodetectors. Macromolecular Rapid Communications, 2022, , 2100928.	3.9	0
14	Stable and efficient perovskite solar cells by discrete two-dimensional perovskites capped on the three-dimensional perovskites bilayer thin film. Nano Energy, 2022, 96, 107126.	16.0	14
15	Polyzwitterionic double-network ionogel electrolytes for supercapacitors with cryogenic-effective stability. Chemical Engineering Journal, 2022, 438, 135607.	12.7	37
16	A General Protein Unfolding hemical Coupling Strategy for Pure Protein Hydrogels with Mechanically Strong and Multifunctional Properties. Advanced Science, 2022, 9, e2102557.	11.2	40
17	Mechanically Strong Metal–Organic Framework Nanoparticle-Based Double Network Hydrogels for Fluorescence Imaging. ACS Applied Nano Materials, 2022, 5, 1348-1355.	5.0	11
18	HDRLM3D: A Deep Reinforcement Learning-Based Model with Human-like Perceptron and Policy for Crowd Evacuation in 3D Environments. ISPRS International Journal of Geo-Information, 2022, 11, 255.	2.9	4

#	Article	IF	CITATIONS
19	Recent progress in the allâ€solidâ€state flexible supercapacitors. SmartMat, 2022, 3, 349-383.	10.7	21
20	Solution-Processed Ternary Perovskite-Organic Broadband Photodetectors with Ultrahigh Detectivity. ACS Applied Materials & amp; Interfaces, 2022, 14, 18744-18750.	8.0	17
21	Structural Polyfluorene Derivative Nanocarriers with Promising Fluorescence Emission and Antifouling Properties. ACS Applied Polymer Materials, 2022, 4, 4013-4024.	4.4	3
22	Cross-seeding between AÎ ² and SEVI indicates a pathogenic link and gender difference between alzheimer diseases and AIDS. Communications Biology, 2022, 5, 417.	4.4	8
23	Repurposing of intestinal defensins as multi-target, dual-function amyloid inhibitors <i>via</i> cross-seeding. Chemical Science, 2022, 13, 7143-7156.	7.4	6
24	Osteichthyes skin-inspired tough and sticky composite hydrogels for dynamic adhesive dressings. Composites Part B: Engineering, 2022, 241, 110010.	12.0	23
25	Spatiotemporal self-strengthening hydrogels for oral tissue regeneration. Composites Part B: Engineering, 2022, 243, 110119.	12.0	14
26	Amyloid cross-seeding between AÎ ² and hIAPP in relation to the pathogenesis of Alzheimer and type 2 diabetes. Chinese Journal of Chemical Engineering, 2021, 30, 225-235.	3.5	18
27	Microbial biomanufacture of metal/metallic nanomaterials and metabolic engineering: design strategies, fundamental mechanisms, and future opportunities. Journal of Materials Chemistry B, 2021, 9, 6491-6506.	5.8	11
28	Antimicrobial α-defensins as multi-target inhibitors against amyloid formation and microbial infection. Chemical Science, 2021, 12, 9124-9139.	7.4	25
29	Mussel-Inspired Polymeric Coatings to Realize Functions from Single and Dual to Multiple Antimicrobial Mechanisms. ACS Applied Materials & Interfaces, 2021, 13, 3089-3097.	8.0	39
30	Machine Learning-Enabled Design and Prediction of Protein Resistance on Self-Assembled Monolayers and Beyond. ACS Applied Materials & amp; Interfaces, 2021, 13, 11306-11319.	8.0	14
31	Repurposing a Cardiovascular Disease Drug of Cloridarol as hIAPP Inhibitor. ACS Chemical Neuroscience, 2021, 12, 1419-1427.	3.5	15
32	A multiscale polymerization framework towards network structure and fracture of double-network hydrogels. Npj Computational Materials, 2021, 7, .	8.7	24
33	Host–Guest Interaction-Mediated Photo/Temperature Dual-Controlled Antibacterial Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 14543-14551.	8.0	32
34	Design and Engineering of Amyloid Aggregationâ€Prone Fragments and Their Antimicrobial Conjugates with Multiâ€Target Functionality. Advanced Functional Materials, 2021, 31, 2102978.	14.9	13
35	Comb-like structural modification stabilizes polyvinylidene fluoride membranes to realize thermal-regulated sustainable transportation efficiency. Journal of Colloid and Interface Science, 2021, 591, 173-183.	9.4	10
36	Microsphere-Embedded Hydrogel Sustained-Release System to Inhibit Postoperative Epidural Fibrosis. ACS Applied Bio Materials, 2021, 4, 5122-5131.	4.6	12

#	Article	IF	CITATIONS
37	Nearâ€Infrared Light Triggered Selfâ€Powered Mechanoâ€Optical Communication System using Wearable Photodetector Textile. Advanced Functional Materials, 2021, 31, 2104782.	14.9	74
38	Solid-State Double-Network Hydrogel Redox Electrolytes for High-Performance Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 34168-34177.	8.0	16
39	Design and Engineering of Amyloid Aggregationâ€Prone Fragments and Their Antimicrobial Conjugates with Multiâ€Target Functionality (Adv. Funct. Mater. 32/2021). Advanced Functional Materials, 2021, 31, 2170236.	14.9	0
40	Machine Learning-Enabled Repurposing and Design of Antifouling Polymer Brushes. Chemical Engineering Journal, 2021, 420, 129872.	12.7	17
41	A General Crosslinker Strategy to Realize Intrinsic Frozen Resistance of Hydrogels. Advanced Materials, 2021, 33, e2104006.	21.0	82
42	Cationic peptide-based salt-responsive antibacterial hydrogel dressings for wound healing. International Journal of Biological Macromolecules, 2021, 190, 754-762.	7.5	25
43	Dual amyloid cross-seeding reveals steric zipper-facilitated fibrillization and pathological links between protein misfolding diseases. Journal of Materials Chemistry B, 2021, 9, 3300-3316.	5.8	15
44	Intermediates of tris(pentafluorophenyl)borane and dimethyl carbonate pave the way for deeper organosiloxane depolymerization reactions. Polymer Journal, 2021, 53, 573-579.	2.7	1
45	Molecularly Engineered Zwitterionic Hydrogels with High Toughness and Self-Healing Capacity for Soft Electronics Applications. Chemistry of Materials, 2021, 33, 8418-8429.	6.7	85
46	Surface Chemistry of Nanohybrids with Fumed Silica Functionalized by Polydimethylsiloxane/Dimethyl Carbonate Studied Using 1H, 13C, and 29Si Solid-State NMR Spectroscopy. Molecules, 2021, 26, 5974.	3.8	1
47	Fast-cured UV-LED polymer materials filled with high mineral contents as wear-resistant, antibacterial coatings. Chemical Engineering Journal, 2020, 382, 122927.	12.7	15
48	Multiple Physical Bonds to Realize Highly Tough and Self-Adhesive Double-Network Hydrogels. ACS Applied Polymer Materials, 2020, 2, 1031-1042.	4.4	39
49	Introduction and Fundamentals of Human Islet Amyloid Polypeptide Inhibitors. ACS Applied Bio Materials, 2020, 3, 8286-8308.	4.6	20
50	Valinomycin as a potential antiviral agent against coronaviruses: A review. Biomedical Journal, 2020, 43, 414-423.	3.1	22
51	Molecular Dynamics Simulations of Cholesterol Effects on the Interaction of hIAPP with Lipid Bilayer. Journal of Physical Chemistry B, 2020, 124, 7830-7841.	2.6	8
52	A Universal Coating Strategy for Controllable Functionalized Polymer Surfaces. Advanced Functional Materials, 2020, 30, 2004633.	14.9	40
53	Novel Salt-Responsive SiO ₂ @Cellulose Membranes Promote Continuous Gradient and Adjustable Transport Efficiency. ACS Applied Materials & Interfaces, 2020, 12, 42169-42178.	8.0	12
54	Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors. Journal of Materials Chemistry A, 2020, 8, 20474-20485.	10.3	147

#	Article	IF	CITATIONS
55	Aromadendrin: a dual amyloid promoter to accelerate fibrillization and reduce cytotoxicity of both amyloid-β and hIAPP. Materials Advances, 2020, 1, 1241-1252.	5.4	11
56	Micro- and macroscopically structured zwitterionic polymers with ultralow fouling property. Journal of Colloid and Interface Science, 2020, 578, 242-253.	9.4	39
57	Molecular simulations and understanding of antifouling zwitterionic polymer brushes. Journal of Materials Chemistry B, 2020, 8, 3814-3828.	5.8	78
58	Converting Pomelo Peel into Eco-friendly and Low-Consumption Photothermic Biomass Sponge toward Multifunctioal Solar-to-Heat Conversion. ACS Sustainable Chemistry and Engineering, 2020, 8, 5328-5337.	6.7	79
59	Computational Investigation of Antifouling Property of Polyacrylamide Brushes. Langmuir, 2020, 36, 2757-2766.	3.5	25
60	Interfacial phenomena in composites with nanostructured succinic acid bound to hydrophilic and hydrophobic nanosilicas. Colloids and Interface Science Communications, 2020, 35, 100251.	4.1	13
61	Lanthanide-Doped Upconversion Nanoparticle-Cross-Linked Double-Network Hydrogels with Strong Bulk/Interfacial Toughness and Tunable Full-Color Fluorescence for Bioimaging and Biosensing. ACS Applied Nano Materials, 2020, 3, 2774-2786.	5.0	25
62	Antifungal peptides produced by actinomycetes and their biological activities against plant diseases. Journal of Antibiotics, 2020, 73, 265-282.	2.0	37
63	From design to applications of stimuli-responsive hydrogel strain sensors. Journal of Materials Chemistry B, 2020, 8, 3171-3191.	5.8	131
64	An efficient flood dynamic visualization approach based on 3D printing and augmented reality. International Journal of Digital Earth, 2020, 13, 1302-1320.	3.9	24
65	Design principles and fundamental understanding of biosensors for amyloid-Î ² detection. Journal of Materials Chemistry B, 2020, 8, 6179-6196.	5.8	39
66	Design of salt-responsive and regenerative antibacterial polymer brushes with integrated bacterial resistance, killing, and release properties. Journal of Materials Chemistry B, 2019, 7, 5762-5774.	5.8	48
67	"Janus-Featured―Hydrogel with Antifouling and Bacteria-Releasing Properties. Industrial & Engineering Chemistry Research, 2019, 58, 17792-17801.	3.7	9
68	Aggregation-Caused Quenching-Type Naphthalimide Fluorophores Grafted and Ionized in a 3D Polymeric Hydrogel Network for Highly Fluorescent and Locally Tunable Emission. ACS Macro Letters, 2019, 8, 937-942.	4.8	63
69	Nanostructured Polymethylsiloxane/Fumed Silica Blends. Materials, 2019, 12, 2409.	2.9	14
70	Upconversion Nanoparticles@Carbon Dots@Meso-SiO ₂ Sandwiched Core–Shell Nanohybrids with Tunable Dual-Mode Luminescence for 3D Anti-Counterfeiting Barcodes. Langmuir, 2019, 35, 11503-11511.	3.5	93
71	Fundamentals and applications of zwitterionic antifouling polymers. Journal Physics D: Applied Physics, 2019, 52, 403001.	2.8	110
72	A 29Si, 1H, and 13C Solid-State NMR Study on the Surface Species of Various Depolymerized Organosiloxanes at Silica Surface. Nanoscale Research Letters, 2019, 14, 160.	5.7	75

#	Article	IF	CITATIONS
73	Super Hydrophilic Semi-IPN Fluorescent Poly(<i>N</i> -(2-hydroxyethyl)acrylamide) Hydrogel for Ultrafast, Selective, and Long-Term Effective Mercury(II) Detection in a Bacteria-Laden System. ACS Applied Bio Materials, 2019, 2, 906-915.	4.6	16
74	One-Pot and One-Step Fabrication of Salt-Responsive Bilayer Hydrogels with 2D and 3D Shape Transformations. ACS Applied Materials & Interfaces, 2019, 11, 25417-25426.	8.0	31
75	Flood evacuation simulations using cellular automata and multiagent systems -a human-environment relationship perspective. International Journal of Geographical Information Science, 2019, 33, 2241-2258.	4.8	25
76	Electric Assisted Salt-Responsive Bacterial Killing and Release of Polyzwitterionic Brushes in Low-Concentration Salt Solution. Langmuir, 2019, 35, 8285-8293.	3.5	13
77	Long-term stability and salt-responsive behavior of polyzwitterionic brushes with cross-linked structure. Progress in Organic Coatings, 2019, 134, 153-161.	3.9	22
78	Design of low temperature-responsive hydrogels used as a temperature indicator. Polymer, 2019, 173, 182-189.	3.8	19
79	Dual-stimulus bilayer hydrogel actuators with rapid, reversible, bidirectional bending behaviors. Journal of Materials Chemistry C, 2019, 7, 4970-4980.	5.5	76
80	A zwitterionic polymer as an interfacial layer for efficient and stable perovskite solar cells. RSC Advances, 2019, 9, 30317-30324.	3.6	13
81	Double-Network Physical Cross-Linking Strategy To Promote Bulk Mechanical and Surface Adhesive Properties of Hydrogels. Macromolecules, 2019, 52, 9512-9525.	4.8	59
82	Fundamentals of cross-seeding of amyloid proteins: an introduction. Journal of Materials Chemistry B, 2019, 7, 7267-7282.	5.8	87
83	Fluorescent Hydrogelâ€Coated Paper/Textile as Flexible Chemosensor for Visual and Wearable Mercury(II) Detection. Advanced Materials Technologies, 2019, 4, 1800201.	5.8	46
84	Thermo-Responsive and Shape-Adaptive Hydrogel Actuators from Fundamentals to Applications. Engineered Science, 2019, , .	2.3	12
85	Real-Time in Situ Investigation of Supramolecular Shape Memory Process by Fluorescence Switching. Journal of Physical Chemistry C, 2018, 122, 9499-9506.	3.1	29
86	Integration of antifouling and antibacterial properties in salt-responsive hydrogels with surface regeneration capacity. Journal of Materials Chemistry B, 2018, 6, 950-960.	5.8	78
87	Ultrafast and Efficient Detection of Formaldehyde in Aqueous Solutions Using Chitosan-based Fluorescent Polymers. ACS Sensors, 2018, 3, 2394-2401.	7.8	76
88	Friction and Wear Mechanism of MoS2/C Composite Coatings Under Atmospheric Environment. Tribology Letters, 2017, 65, 1.	2.6	28
89	Ab Initio Study of Interfacial Structure Transformation of Amorphous Carbon Catalyzed by Ti, Cr, and W Transition Layers. ACS Applied Materials & amp; Interfaces, 2017, 9, 41115-41119.	8.0	19
90	Stereoselective Behavior of the Chiral Herbicides Diclofopâ€Methyl and Diclofop During the Soy Sauce Brewing Process. Chirality, 2016, 28, 78-84.	2.6	3

#	Article	IF	CITATIONS
91	Aliphatic–aromatic poly(butylene carbonateâ€ <i>co</i> â€terephthalate) random copolymers: Synthesis, cocrystallization, and compositionâ€dependent properties. Journal of Applied Polymer Science, 2015, 132,	2.6	19
92	A high-molecular-weight and high-T _g poly(ester carbonate) partially based on isosorbide: synthesis and structure–property relationships. Polymer Chemistry, 2015, 6, 633-642.	3.9	59
93	A designed synthetic strategy toward poly(isosorbide terephthalate) copolymers: a combination of temporary modification, transesterification, cyclization and polycondensation. Polymer Chemistry, 2015, 6, 7470-7479.	3.9	26
94	Effect of the biobased linear long-chain monomer on crystallization and biodegradation behaviors of poly(butylene carbonate)-based copolycarbonates. RSC Advances, 2015, 5, 2213-2222.	3.6	32
95	Modification of chitosan with monomethyl fumaric acid in an ionic liquid solution. Carbohydrate Polymers, 2015, 117, 973-979.	10.2	49
96	Interior permanent magnet motor drive system modeling for electromagnetic interference analysis. , 2014, , .		3
97	Synthesis and properties of biodegradable multiblock poly(esterâ€carbonate) comprising of poly(<scp>L</scp> â€lactic acid) and poly(butylene carbonate) with hexamethylene diisocyanate as chainâ€extender. Journal of Applied Polymer Science, 2014, 131, .	2.6	2
98	Colloids containing gadolinium-capped gold nanoparticles as high relaxivity dual-modality contrast agents for CT and MRI. Colloids and Surfaces B: Biointerfaces, 2014, 123, 130-135.	5.0	15
99	A nonâ€phosgene process to homopolycarbonate and copolycarbonates of isosorbide using dimethyl carbonate: Synthesis, characterization, and properties. Journal of Polymer Science Part A, 2013, 51, 1387-1397.	2.3	105
100	Novel Poly(butylene fumarate) and Poly(butylene succinate) Multiblock Copolymers Bearing Reactive Carbon–Carbon Double Bonds: Synthesis, Characterization, Cocrystallization, and Properties. Industrial & Engineering Chemistry Research, 2013, 52, 6147-6155.	3.7	34
101	<i>In situ</i> Synthesis of Poly(methyl methacrylate)/Graphene Oxide Nanocomposites Using Thermal-initiated and Graphene Oxide-initiated Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 720-727.	2.2	20
102	Microstructure and tribological behavior of self-lubricating (Si:N)-DLC/MAO coatings on AZ80 magnesium substrate. Acta Metallurgica Sinica (English Letters), 2013, 26, 693-698.	2.9	14
103	Synthesis and Characterization of Poly(<i>p</i> -phenylene benzobisoxazole)/Poly(pyridobisimidazole) Block Copolymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 508-517.	2.2	2
104	Surface decoration of graphene by grafting polymerization using graphene oxide as the initiator. Journal of Materials Chemistry, 2012, 22, 3982.	6.7	67
105	Synthesis, Characterization and Degradation of Novel Biodegradable Poly(butylene-co-hexamethylene) Tj ETQq1 48, 583-594.	1 0.78431 2.2	4 rgBT /Ove 29
106	In situ synthesis of poly(ethylene terephthalate)/graphene composites using a catalyst supported on graphite oxide. Journal of Materials Chemistry, 2011, 21, 3931.	6.7	43
107	Synthesis of highâ€impact biodegradable multiblock copolymers comprising of poly(butylene succinate) and poly(1,2â€propylene succinate) with hexamethylene diisocyanate as chain extender. Polymers for Advanced Technologies, 2011, 22, 279-285.	3.2	41
108	Ultravioletâ€induced crosslinking of poly(butylene succinate) and its thermal property, dynamic mechanical property, and biodegradability. Polymers for Advanced Technologies, 2011, 22, 648-656.	3.2	26

#	Article	IF	CITATIONS
109	Synthesis, characterization and properties of novel biodegradable multiblock copolymers comprising poly(butylene succinate) and poly(1,2â€propylene terephthalate) with hexamethylene diisocyanate as a chain extender. Polymer International, 2011, 60, 666-675.	3.1	36
110	Highâ€molecularâ€weight aliphatic polycarbonates by melt polycondensation of dimethyl carbonate and aliphatic diols: synthesis and characterization. Polymer International, 2011, 60, 1060-1067.	3.1	115
111	Investigation on isothermal crystallization, melting behaviors, and spherulitic morphologies of multiblock copolymers containing poly(butylene succinate) and poly(1,2â€propylene succinate). Journal of Applied Polymer Science, 2011, 119, 2124-2134.	2.6	10
112	Novel catalysts based on titanium dioxide/silicon dioxide for poly(ethylene terephthalate). Journal of Applied Polymer Science, 2010, 115, 2470-2478.	2.6	16
113	Crystallization kinetics, melting behavior, and morphologies of poly(butylene succinate) and poly(butylene succinate)â€ <i>block</i> â€poly(propylene glycol) segmented copolyester. Journal of Applied Polymer Science, 2010, 118, 2225-2235.	2.6	2
114	Motion Detection for Rapidly Moving Cameras in Fully 3D Scenes. , 2010, , .		2
115	Surface grafting modification of fibrous silicates with polyvinylpyrrolidone and its application in nanocomposites. Journal of Applied Polymer Science, 2009, 111, 566-575.	2.6	11
116	Influence of montmorillonite treatment and montmorillonite dispersion state on the crystallization behavior of poly(ethylene terephthalate)/montmorillonite nanocomposites. Journal of Applied Polymer Science, 2009, 114, 2327-2338.	2.6	13
117	Synthesis, characterization and properties of biodegradable poly(butylene) Tj ETQq1 1 0.784314 rgBT /Overlock 893-899.	10 Tf 50 3.1	427 Td (suc 34
118	Inâ€situ synthesis of poly(ethylene terephthalate)/clay nanocomposites using TiO ₂ /SiO ₂ solâ€intercalated montmorillonite as polycondensation catalyst. Polymer Engineering and Science, 2009, 49, 1562-1572.	3.1	17
119	New insight into the crystallization behavior of poly(ethylene terephthalate)/clay nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2380-2394.	2.1	38
120	Thermal stability of surfactants with amino and imido groups in poly(ethylene terephthalate)/clay composites. Journal of Applied Polymer Science, 2008, 109, 4112-4120.	2.6	12
121	Synthesis and characterization of poly(ethylene terephthalate)/attapulgite nanocomposites. Journal of Applied Polymer Science, 2007, 103, 1279-1286.	2.6	54
122	Melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) and its copolyester modified with rosin maleopimaric acid anhydride. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 900-913.	2.1	37
123	Synthesis, characterization and properties of poly(butylene succinate) modified with rosin maleopimaric acid anhydride. Polymer International, 2006, 55, 545-551.	3.1	30
124	Effects of rosin-type clarifying agent on the crystallization and compatibility of polypropylene and low density polyethylene. Journal of Applied Polymer Science, 2006, 99, 1568-1575.	2.6	7
125	The effects of metallic derivatives released from montmorillonite on the thermal stability of poly(ethylene terephthalate)/montmorillonite nanocomposites. Journal of Applied Polymer Science, 2006, 101, 1692-1699.	2.6	19
126	Preparation and properties of PET/PA6 copolymer/montmorillonite hybrid nanocomposite. Journal of Applied Polymer Science, 2006, 101, 2512-2517.	2.6	8

DONG ZHANG

#	Article	IF	CITATIONS
127	Non-isothermal crystallization kinetics and melting behaviors of poly(butylene succinate) and its copolyester modified with trimellitic imide units. Journal of Applied Polymer Science, 2006, 102, 2493-2499.	2.6	13
128	Synthesis, Characterization and Properties of Poly(butylene succinate) Reinforced by Trimellitic Imide Units. Macromolecular Chemistry and Physics, 2006, 207, 694-700.	2.2	11
129	Spinning and properties of poly(ethylene terephthalate)/organomontmorillonite nanocomposite fibers. Journal of Applied Polymer Science, 2005, 95, 1443-1447.	2.6	53
130	Crystallization behavior and morphology of poly(butylene succinate) modified with rosin maleopimaric acid anhydride. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2694-2704.	2.1	12
131	Effects of rosin-type nucleating agent and low density polyethylene on the crystallization process of polypropylene. Journal of Applied Polymer Science, 2003, 88, 2804-2809.	2.6	8
132	Effects of rosin-type cocrystal nucleating agents on the crystallization process and the properties of polypropylene. Journal of Applied Polymer Science, 2003, 89, 2137-2141.	2.6	10
133	The effects of alkaline earth dehydroabietate on the crystallization process of polypropylene. Journal of Applied Polymer Science, 2002, 85, 2644-2651.	2.6	7
134	Synthesis and properties of poly(ester ether) multiblock copolymers/organomontmorillonite hybrid nanocomposite. Journal of Applied Polymer Science, 2002, 84, 1716-1720.	2.6	9