
Yubing Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580646/publications.pdf Version: 2024-02-01

YURING SUN

#	Article	IF	CITATIONS
1	The Synthesis of Z-Scheme MoS2/g-C3N4 Heterojunction for Enhanced Visible-Light-Driven Photoreduction of Uranium. Catalysis Letters, 2022, 152, 1981-1989.	2.6	10
2	Uranyl(VI) boosting 3D g-C3N4 photocatalytic H2O2 production for U(VI) immobilization. Journal of Cleaner Production, 2022, 330, 129821.	9.3	25
3	Enhanced Photocatalytic Reduction of U(VI) on SrTiO ₃ / g ₃ N ₄ Composites : Synergistic Interaction. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	4
4	Recent advances on the adsorption and oxidation of mercury from coal-fired flue gas: A review. Journal of Cleaner Production, 2022, 367, 133111.	9.3	24
5	Bioaccumulation of uranium by Candida utilis: Investigated by water chemistry and biological effects. Environmental Research, 2021, 194, 110691.	7.5	10
6	Recent Advances in Two-Dimensional MoS ₂ Nanosheets for Environmental Application. Industrial & Engineering Chemistry Research, 2021, 60, 8007-8026.	3.7	21
7	Potential environmental applications of MXenes: A critical review. Chemosphere, 2021, 271, 129578.	8.2	71
8	Application of surface complexation modeling on adsorption of uranium at water-solid interface: A review. Environmental Pollution, 2021, 278, 116861.	7.5	32
9	Carbon materials for extraction of uranium from seawater. Chemosphere, 2021, 278, 130411.	8.2	71
10	The enhanced photodegradation of bisphenol A by TiO2/C3N4 composites. Environmental Research, 2020, 182, 109090.	7.5	47
11	Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review. Journal of Cleaner Production, 2020, 277, 123360.	9.3	92
12	Environmental application of emerging zero-valent iron-based materials on removal of radionuclides from the wastewater: A review. Environmental Research, 2020, 188, 109855.	7.5	43
13	Simultaneous removal of U(VI) and Re(VII) by highly efficient functionalized ZIF-8 nanosheets adsorbent. Journal of Hazardous Materials, 2020, 393, 122398.	12.4	59
14	A robust prediction of U(VI) sorption on Fe3O4/activated carbon composites with surface complexation model. Environmental Research, 2020, 185, 109467.	7.5	46
15	Ultrafast and highly capture of U(VI) by hierarchical mesoporous carbon. Radiochimica Acta, 2020, 108, 717-726.	1.2	6
16	Adsorption of radionuclides on carbon-based nanomaterials. Interface Science and Technology, 2019, , 141-215.	3.3	4
17	A spectroscopic and theoretical investigation of interaction mechanisms of tetracycline and polystyrene nanospheres under different conditions. Environmental Pollution, 2019, 249, 398-405.	7.5	57
18	Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks. Environmental Pollution, 2019, 248, 906-915.	7.5	122

#	Article	IF	CITATIONS
19	Response of microbial communities and interactions to thallium in contaminated sediments near a pyrite mining area. Environmental Pollution, 2019, 248, 916-928.	7.5	70
20	Modeling and EXAFS investigation of U(VI) sequestration on Fe3O4/PCMs composites. Chemical Engineering Journal, 2019, 369, 736-744.	12.7	50
21	Is the interaction between graphene oxide and minerals reversible?. Environmental Pollution, 2019, 249, 785-793.	7.5	12
22	Decontamination of U(VI) on graphene oxide/Al2O3 composites investigated by XRD, FT-IR and XPS techniques. Environmental Pollution, 2019, 248, 332-338.	7.5	81
23	The influence of humic acid on U(VI) sequestration by calcium titanate. Chemical Engineering Journal, 2019, 368, 598-605.	12.7	27
24	Spectroscopic and theoretical investigation on efficient removal of U(VI) by amine-containing polymers. Chemical Engineering Journal, 2019, 367, 94-101.	12.7	21
25	Fabrication of porous carbon and application of Eu(III) removal from aqueous solutions. Journal of Molecular Liquids, 2019, 280, 34-39.	4.9	10
26	Mechanistic investigation of U(VI) sequestration by zero-valent iron/activated carbon composites. Chemical Engineering Journal, 2019, 362, 99-106.	12.7	50
27	Effect of Staphylococcus epidermidis on U(VI) sequestration by Al-goethite. Journal of Hazardous Materials, 2019, 368, 52-62.	12.4	27
28	Bioaccumulation and transformation of U(VI) by sporangiospores of Mucor circinelloides. Chemical Engineering Journal, 2019, 362, 81-88.	12.7	44
29	Influence of carbonate on sequestration of U(VI) on perovskite. Journal of Hazardous Materials, 2019, 364, 100-107.	12.4	51
30	Enhanced Photocatalytic Simultaneous Removals of Cr(VI) and Bisphenol A over Co(II)-Modified TiO ₂ . Langmuir, 2019, 35, 276-283.	3.5	36
31	Plasma-enhanced amidoxime/magnetic graphene oxide for efficient enrichment of U(VI) investigated by EXAFS and modeling techniques. Chemical Engineering Journal, 2019, 357, 66-74.	12.7	53
32	Synthesis of magnetic biochar composites for enhanced uranium(VI) adsorption. Science of the Total Environment, 2019, 651, 1020-1028.	8.0	220
33	Facile construction of 3D magnetic graphene oxide hydrogel via incorporating assembly and chemical bubble and its application in arsenic remediation. Chemical Engineering Journal, 2019, 358, 552-563.	12.7	50
34	Enhanced immobilization of U(VI) on Mucor circinelloides in presence of As(V): Batch and XAFS investigation. Environmental Pollution, 2018, 237, 228-236.	7.5	30
35	Efficient photocatalytic CO2 reduction over Co(II) species modified CdS in aqueous solution. Applied Catalysis B: Environmental, 2018, 226, 252-257.	20.2	70
36	Highly uranium elimination by crab shells-derived porous graphitic carbon nitride: Batch, EXAFS and theoretical calculations. Chemical Engineering Journal, 2018, 346, 406-415.	12.7	64

#	Article	IF	CITATIONS
37	Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions. Science of the Total Environment, 2018, 630, 951-959.	8.0	144
38	Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U(VI) and 241Am(III) efficient removal: Batch and EXAFS studies. Chemical Engineering Journal, 2018, 332, 775-786.	12.7	211
39	Interaction between Al2O3 and different sizes of GO in aqueous environment. Environmental Pollution, 2018, 243, 1802-1809.	7.5	18
40	Spectroscopic Investigation of Enhanced Adsorption of U(VI) and Eu(III) on Magnetic Attapulgite in Binary System. Industrial & Engineering Chemistry Research, 2018, 57, 7533-7543.	3.7	32
41	Utilization of iron sulfides for wastewater treatment: a critical review. Reviews in Environmental Science and Biotechnology, 2017, 16, 289-308.	8.1	88
42	Spectroscopic and Modeling Investigation of Eu(III)/U(VI) Sorption on Nanomagnetite from Aqueous Solutions. ACS Sustainable Chemistry and Engineering, 2017, 5, 5493-5502.	6.7	68
43	Superior immobilization of U(VI) and 243Am(III) on polyethyleneimine modified lamellar carbon nitride composite from water environment. Chemical Engineering Journal, 2017, 326, 863-874.	12.7	109
44	New insights into Th(IV) speciation on sepiolite: Evidence for EXAFS and modeling investigation. Chemical Engineering Journal, 2017, 322, 66-72.	12.7	60
45	Plasma-Facilitated Synthesis of Amidoxime/Carbon Nanofiber Hybrids for Effective Enrichment of ²³⁸ U(VI) and ²⁴¹ Am(III). Environmental Science & Technology, 2017, 51, 12274-12282.	10.0	127
46	New Synthesis of nZVI/C Composites as an Efficient Adsorbent for the Uptake of U(VI) from Aqueous Solutions. Environmental Science & Technology, 2017, 51, 9227-9234.	10.0	114
47	Decontamination of Sr(II) on Magnetic Polyaniline/Graphene Oxide Composites: Evidence from Experimental, Spectroscopic, and Modeling Investigation. ACS Sustainable Chemistry and Engineering, 2017, 5, 6924-6931.	6.7	46
48	Mechanical investigation of U(VI) on pyrrhotite by batch, EXAFS and modeling techniques. Journal of Hazardous Materials, 2017, 322, 488-498.	12.4	63
49	Interaction of sulfonated graphene oxide with U(VI) studied by spectroscopic analysis and theoretical calculations. Chemical Engineering Journal, 2017, 310, 292-299.	12.7	130
50	Spectroscopic and modeling investigation of efficient removal of U(VI) on a novel magnesium silicate/diatomite. Separation and Purification Technology, 2017, 174, 425-431.	7.9	63
51	Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: A spectroscopic and modeling approach. Journal of Hazardous Materials, 2016, 313, 253-261.	12.4	169
52	Direct Synthesis of Bacteria-Derived Carbonaceous Nanofibers as a Highly Efficient Material for Radionuclides Elimination. ACS Sustainable Chemistry and Engineering, 2016, 4, 4608-4616.	6.7	60
53	Experimental and theoretical evidence for competitive interactions of tetracycline and sulfamethazine with reduced graphene oxides. Environmental Science: Nano, 2016, 3, 1318-1326.	4.3	88
54	Immobilization of As(V) in <i>Rhizopus oryzae</i> Investigated by Batch and XAFS Techniques. ACS Omega, 2016, 1, 899-906.	3.5	10

#	Article	IF	CITATIONS
55	Macroscopic and Microscopic Investigation of U(VI) and Eu(III) Adsorption on Carbonaceous Nanofibers. Environmental Science & Technology, 2016, 50, 4459-4467.	10.0	398
56	Competitive sorption of As(V) and Cr(VI) on carbonaceous nanofibers. Chemical Engineering Journal, 2016, 293, 311-318.	12.7	166
57	The adsorption and desorption of Ni(II) on Al substituted goethite. Journal of Molecular Liquids, 2015, 201, 30-35.	4.9	61
58	Fabrication of fungus/attapulgite composites and their removal of U(VI) from aqueous solution. Chemical Engineering Journal, 2015, 269, 1-8.	12.7	131
59	Effect of microbes on Ni(II) diffusion onto sepiolite. Journal of Molecular Liquids, 2015, 204, 170-175.	4.9	32
60	Adsorption of 4- <i>n</i> -Nonylphenol and Bisphenol-A on Magnetic Reduced Graphene Oxides: A Combined Experimental and Theoretical Studies. Environmental Science & Technology, 2015, 49, 9168-9175.	10.0	427
61	Surface complexation modeling of adsorption of Cd(II) on graphene oxides. Journal of Molecular Liquids, 2015, 209, 753-758.	4.9	73
62	The sorption of Cd(II) and U(VI) on sepiolite: A combined experimental and modeling studies. Journal of Molecular Liquids, 2015, 209, 706-712.	4.9	59
63	Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides. Journal of Hazardous Materials, 2015, 295, 127-137.	12.4	227
64	Adsorption and Desorption of U(VI) on Functionalized Graphene Oxides: A Combined Experimental and Theoretical Study. Environmental Science & Technology, 2015, 49, 4255-4262.	10.0	473
65	Plasma synthesis of β-cyclodextrin/Al(OH)3 composites as adsorbents for removal of UO22+ from aqueous solutions. Journal of Molecular Liquids, 2015, 207, 224-230.	4.9	56
66	Fabrication of oxidized multiwalled carbon nanotubes for the immobilization of U(VI) from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 2015, 305, 361-369.	1.5	5
67	Interaction mechanism of Eu(III) with MX-80 bentonite studied by batch, TRLFS and kinetic desorption techniques. Chemical Engineering Journal, 2015, 264, 570-576.	12.7	50
68	Sequestration of uranium on fabricated aluminum co-precipitated with goethite (Al-FeOOH). Radiochimica Acta, 2014, 102, 797-804.	1.2	41
69	Characterization of radioactive cobalt on graphene oxide by macroscopic and spectroscopic techniques. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 1979-1986.	1.5	31
70	The efficient enrichment of U(<scp>vi</scp>) by graphene oxide-supported chitosan. RSC Advances, 2014, 4, 61919-61926.	3.6	54
71	Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. Journal of Hazardous Materials, 2014, 280, 399-408.	12.4	339
72	The sequestration of U(VI) on functional β-cyclodextrin-attapulgite nanorods. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302, 385-391.	1.5	33

#	Article	IF	CITATIONS
73	Highly Efficient Enrichment of Radionuclides on Graphene Oxide-Supported Polyaniline. Environmental Science & Technology, 2013, 47, 9904-9910.	10.0	541
74	Adsorption of Polycyclic Aromatic Hydrocarbons on Graphene Oxides and Reduced Graphene Oxides. Chemistry - an Asian Journal, 2013, 8, 2755-2761.	3.3	150
75	Synthesis of multi-walled carbon nanotube–hydroxyapatite composites and its application in the sorption of Co(II) from aqueous solutions. Journal of Molecular Liquids, 2013, 179, 46-53.	4.9	47
76	Study on the acid–base surface property of the magnetite graphene oxide and its usage for the removal of radiostrontium from aqueous solution. Radiochimica Acta, 2013, 101, 785-794.	1.2	20
77	Removal of U(VI) from aqueous solutions by the nano-iron oxyhydroxides. Radiochimica Acta, 2012, 100, 779-784.	1.2	55
78	Interaction between Eu(III) and Graphene Oxide Nanosheets Investigated by Batch and Extended X-ray Absorption Fine Structure Spectroscopy and by Modeling Techniques. Environmental Science & Technology, 2012, 46, 6020-6027.	10.0	470
79	Redox Behavior of Uranium at the Nanoporous Aluminum Oxide-Water Interface: Implications for Uranium Remediation. Environmental Science & Technology, 2012, 46, 7301-7309.	10.0	31
80	The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Environmental Radioactivity, 2012, 105, 40-47.	1.7	193
81	Removal of radiocobalt from aqueous solution by oxidized MWCNT. Journal of Radioanalytical and Nuclear Chemistry, 2012, 291, 787-795.	1.5	35
82	Comparison of U(VI) removal from contaminated groundwater by nanoporous alumina and non-nanoporous alumina. Separation and Purification Technology, 2011, 83, 196-203.	7.9	144
83	Investigation of solution chemistry effects on sorption behavior of radionuclide 64Cu(II) on illite. Journal of Radioanalytical and Nuclear Chemistry, 2011, 289, 467-477.	1.5	34
84	Characterization of nano-iron oxyhydroxides and their application in UO2 2+ removal from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 2011, 290, 643-648.	1.5	66
85	Transformation relationship among different magnetic minerals within loess-paleosol sediments of the Chinese Loess Plateau. Science in China Series D: Earth Sciences, 2009, 52, 313-322.	0.9	8