
## Baojun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580639/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The active site of ethanol formation from syngas over Cu4 cluster modified MoS2 catalyst: A theoretical investigation. Applied Surface Science, 2021, 540, 148301.                                                                             | 6.1  | 4         |
| 2  | C2H2 semi-hydrogenation over the supported Pd and Cu catalysts: The effects of the support types, properties and metal-support interaction on C2H4 selectivity and activity. Applied Surface Science, 2020, 503, 144142.                       | 6.1  | 15        |
| 3  | Syngas-to-C2 oxygenates on Cu-based catalyst: Quantitative insight into the balancing effect of active<br>Cul´+(0Ââ‰Âl´Ââ‰Â1) sites. Chemical Engineering Science, 2020, 224, 115785.                                                          | 3.8  | 10        |
| 4  | Crystal facet dependence of carbon chain growth mechanism over the Hcp and Fcc Co catalysts in the Fischer-Tropsch synthesis. Applied Catalysis B: Environmental, 2020, 269, 118847.                                                           | 20.2 | 29        |
| 5  | The new role of surface adsorbed CH (x = 1–3) intermediates as a co-adsorbed promoter in<br>self-promoting syngas conversion to form CH intermediates and C2 oxygenates on the Rh-doped Cu<br>catalyst. Journal of Catalysis, 2019, 377, 1-12. | 6.2  | 18        |
| 6  | PdIn intermetallic material with isolated single-atom Pd sites – A promising catalyst for direct formic<br>acid fuel cell. Chemical Engineering Science, 2019, 199, 64-78.                                                                     | 3.8  | 25        |
| 7  | DFT study on CO oxidative coupling to DMO over Pd4/TiO2 and Pd4/TiO2-Ov: A role of oxygen vacancy on support. Computational Materials Science, 2019, 159, 1-11.                                                                                | 3.0  | 11        |
| 8  | Insight into the C C chain growth in Fischer-Tropsch synthesis on HCP Co(10-10) surface: The effect of crystal facets on the preferred mechanism. Computational Materials Science, 2018, 145, 263-279.                                         | 3.0  | 16        |
| 9  | Density functional theory calculations and analysis for the reduction of NO by H2 on Pd6/TiO2.<br>Computational Materials Science, 2018, 149, 182-190.                                                                                         | 3.0  | 8         |
| 10 | Insight into the role of the promoters Pt, Ru and B in inhibiting the deactivation of Co catalysts in<br>Fischer-Tropsch synthesis. Applied Surface Science, 2018, 453, 309-319.                                                               | 6.1  | 16        |
| 11 | Insight into size dependence of C 2 oxygenate synthesis from syngas on Cu cluster: The effect of cluster size on the selectivity. Applied Surface Science, 2017, 407, 282-296.                                                                 | 6.1  | 22        |
| 12 | Catalytic selectivity of Rh/TiO <sub>2</sub> catalyst in syngas conversion to ethanol: probing into the mechanism and functions of TiO <sub>2</sub> support and promoter. Catalysis Science and Technology, 2017, 7, 1073-1085.                | 4.1  | 31        |
| 13 | Insight into the influence of addition of a second metal Fe and supports with different morphology on H 2 dissociation over Ni/MgO catalysts. Applied Surface Science, 2017, 426, 827-832.                                                     | 6.1  | 1         |
| 14 | Insight into the preferred formation mechanism of long-chain hydrocarbons in Fischer–Tropsch<br>synthesis on Hcp Co(10â^'11) surfaces from DFT and microkinetic modeling. Catalysis Science and<br>Technology, 2017, 7, 3758-3776.             | 4.1  | 39        |
| 15 | Formation of C <sub>2</sub> oxygenates and ethanol from syngas on an Fe-decorated Cu-based catalyst: insight into the role of Fe as a promoter. Physical Chemistry Chemical Physics, 2017, 19, 30883-30894.                                    | 2.8  | 21        |
| 16 | Unraveling the role of support surface hydroxyls and its effect on the selectivity of C2 species over Rh/γ-Al2O3 catalyst in syngas conversion: A theoretical study. Applied Surface Science, 2016, 379, 384-394.                              | 6.1  | 13        |
| 17 | Insight into CH x formation in Fischer–Tropsch synthesis on the hexahedron Co catalyst: Effect of<br>surface structure on the preferential mechanism and existence form. Applied Catalysis A: General,<br>2016, 525, 76-84.                    | 4.3  | 18        |
| 18 | Insight into the mechanism about the initiation, growth and termination of the C–C chain in syngas<br>conversion on the Co(0001) surface: a theoretical study. Physical Chemistry Chemical Physics, 2016, 18,<br>27272-27283.                  | 2.8  | 30        |

BAOJUN WANG

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | First-Principles Study about the Effect of Coverage on H <sub>2</sub> Adsorption and Dissociation over a Rh(100) Surface. Journal of Physical Chemistry C, 2015, 119, 10355-10364.                           | 3.1  | 17        |
| 20 | CH4 dehydrogenation on Cu(111), Cu@Cu(111), Rh@Cu(111) and RhCu(111) surfaces: A comparison studies of catalytic activity. Applied Surface Science, 2015, 341, 100-108.                                      | 6.1  | 30        |
| 21 | Source and major species of CH <sub>x</sub> (x = 1–3) in acetic acid synthesis from methane–syngas on Rh catalyst: a theoretical study. RSC Advances, 2014, 4, 58631-58642.                                  | 3.6  | 5         |
| 22 | Ethanol Synthesis from Syngas on the Stepped Rh(211) Surface: Effect of Surface Structure and Composition. Journal of Physical Chemistry C, 2014, 118, 22691-22701.                                          | 3.1  | 46        |
| 23 | The adsorption and dissociation of methane on cobalt surfaces: thermochemistry and reaction barriers. RSC Advances, 2014, 4, 43004-43011.                                                                    | 3.6  | 25        |
| 24 | Fundamental studies about the interaction of water with perfect, oxygen-vacancy and pre-covered oxygen Cu2O(1 1 1) surfaces: Thermochemistry, barrier, product. Applied Surface Science, 2013, 279, 260-271. | 6.1  | 31        |
| 25 | Insights into the preference of CHx(x=1–3) formation from CO hydrogenation on Cu(111) surface.<br>Applied Surface Science, 2013, 265, 720-730.                                                               | 6.1  | 51        |
| 26 | Insight into the preference mechanism for CC chain formation of C2 oxygenates and the effect of promoters in syngas conversion over Cu-based catalysts. Applied Catalysis A: General, 2013, 466, 77-89.      | 4.3  | 25        |
| 27 | Insights into the mechanism of ethanol formation from syngas on Cu and an expanded prediction of improved Cu-based catalyst. Journal of Catalysis, 2013, 305, 238-255.                                       | 6.2  | 129       |
| 28 | Insights into the effect of surface hydroxyls on CO2 hydrogenation over Pd/ $\hat{I}^3$ -Al2O3 catalyst: A computational study. Applied Catalysis B: Environmental, 2012, 126, 108-120.                      | 20.2 | 62        |
| 29 | The role of CS2 in CS2/NMP mixed solvent in weakening the hydrogen bond of OH–N in coal: a DFT investigation. Journal of Molecular Modeling, 2012, 18, 921-927.                                              | 1.8  | 2         |
| 30 | Solvent effects on Cu2O(111) surface properties and CO adsorption on Cu2O(111) surface: A DFT study.<br>Applied Catalysis A: General, 2011, 400, 142-147.                                                    | 4.3  | 31        |