Lucas Caire da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580569/publications.pdf

Version: 2024-02-01

623734 526287 29 900 14 27 citations g-index h-index papers 33 33 33 947 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthetic Silica Nanoâ€Organelles for Regulation of Cascade Reactions in Multiâ€Compartmentalized Systems. Angewandte Chemie, 2022, 134, .	2.0	8
2	Synthetic Silica Nanoâ€Organelles for Regulation of Cascade Reactions in Multiâ€Compartmentalized Systems. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
3	Synthetic Cells: From Simple Bioâ€Inspired Modules to Sophisticated Integrated Systems. Angewandte Chemie, 2022, 134, .	2.0	15
4	Synthetic Cells: From Simple Bioâ€Inspired Modules to Sophisticated Integrated Systems. Angewandte Chemie - International Edition, 2022, 61, .	13.8	72
5	Lightâ€Activated Membrane Transport in Polymeric Cellâ€Mimics. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
6	Formation of giant polymer vesicles by simple double emulsification using block copolymers as the sole surfactant. Soft Matter, 2021, 17, 4942-4948.	2.7	13
7	Bursting and Reassembly of Giant Double Emulsion Drops Form Polymer Vesicles. ACS Macro Letters, 2021, 10, 401-405.	4.8	4
8	Selfâ€Assembly of Giant Polymer Vesicles by Lightâ€Assisted Solid Hydration. Macromolecular Rapid Communications, 2019, 40, 1900027.	3.9	11
9	Artificial Organelles for Energy Regeneration. Advanced Biology, 2019, 3, e1800323.	3.0	31
10	Polymerâ€Based Module for NAD ⁺ Regeneration with Visible Light. ChemBioChem, 2019, 20, 2593-2596.	2.6	36
11	Directed Growth of Biomimetic Microcompartments. Advanced Biology, 2019, 3, e1800314.	3.0	25
12	A Reversible Proton Generator with On/Off Thermoswitch. Macromolecular Rapid Communications, 2019, 40, 1800713.	3.9	6
13	Asymmetric Covalent Triazine Framework for Enhanced Visibleâ€Light Photoredox Catalysis via Energy Transfer Cascade. Angewandte Chemie - International Edition, 2018, 57, 8316-8320.	13.8	169
14	Monitoring crack appearance and healing in coatings with damage self-reporting nanocapsules. Materials Horizons, 2018, 5, 51-58.	12.2	64
15	Conjugated Microporous Polymers with Immobilized TiO ₂ Nanoparticles for Enhanced Visible Light Photocatalysis. Particle and Particle Systems Characterization, 2018, 35, 1700234.	2.3	38
16	Functional Conjugated Polymers for CO ₂ Reduction Using Visible Light. Chemistry - A European Journal, 2018, 24, 17454-17458.	3.3	112
17	Designing conjugated microporous polymers for visible light-promoted photocatalytic carbon–carbon double bond cleavage in aqueous medium. Journal of Materials Chemistry A, 2018, 6, 22145-22151.	10.3	54
18	A review of how to do an acyclic diene metathesis reaction. Polymer International, 2017, 66, 7-12.	3.1	40

#	Article	IF	CITATIONS
19	Cover Image, Volume 66, Issue 1. Polymer International, 2017, 66, i-i.	3.1	O
20	Acyclic diene metathesis polymerization: History, methods and applications. Progress in Polymer Science, 2017, 69, 79-107.	24.7	86
21	Synthesis and Thermal Characterization of Precision Poly(<i>p</i> a€€yclohexylene alkylene)s via Acyclic Diene Metathesis Polycondensation. Macromolecular Chemistry and Physics, 2016, 217, 850-855.	2.2	8
22	Molecular Motion of the Junction Points in Model Networks Prepared by Acyclic Triene Metathesis. Macromolecular Rapid Communications, 2016, 37, 527-531.	3.9	6
23	Unveiling the hyperbolic thermal behaviour of poly(p-phenylene alkylene)s. Polymer Chemistry, 2015, 6, 6073-6082.	3.9	18
24	Branch-Induced Heterogeneous Chain Motion in Precision Polyolefins. Macromolecules, 2015, 48, 8858-8866.	4.8	5
25	Acyclic diene metathesis polymerization and precision polymers. Applied Petrochemical Research, 2014, 4, 225-233.	1.3	21
26	Large-Scale Preparation of Long-Chain ADMET Synthons. Synthetic Communications, 2014, 44, 2409-2415.	2.1	6
27	Metathesis Polymerization Including ADMET. , 2014, , 1-6.		O
28	Hb S-S \tilde{A} £o Paulo: A new sickling hemoglobin with stable polymers and decreased oxygen affinity. Archives of Biochemistry and Biophysics, 2012, 519, 23-31.	3.0	10
29	Lightâ€Activated Membrane Transport in Polymeric Cellâ€Mimics. Angewandte Chemie, 0, , .	2.0	1