Giovana Domeneghini Mercali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580560/publications.pdf

Version: 2024-02-01

GIOVANA DOMENEGHINI

#	Article	IF	CITATIONS
1	Metabolomics: An analytical technique for food processing evaluation. Food Chemistry, 2022, 366, 130685.	4.2	79
2	Advanced Technologies Applied to Enhance Properties and Structure of Films and Coatings: a Review. Food and Bioprocess Technology, 2022, 15, 1224-1247.	2.6	23
3	Thermosonication for peroxidase inactivation in sugarcane juice. LWT - Food Science and Technology, 2021, 140, 110730.	2.5	14
4	Phycocyanin from Spirulina: A review of extraction methods and stability. Food Research International, 2021, 143, 110314.	2.9	58
5	Phenolic profile of sugarcane juice: Effects of harvest season and processing by ohmic heating and ultrasound. Food Chemistry, 2021, 347, 129058.	4.2	23
6	Increase of mass transfer rates during osmotic dehydration of apples by application of moderate electric field. International Journal of Food Engineering, 2021, 17, 199-208.	0.7	2
7	Ultrasound application for quality improvement of beef Biceps femoris physicochemical characteristics. LWT - Food Science and Technology, 2020, 118, 108817.	2.5	17
8	Influence of ohmic heating on commercial peroxidase and sugarcane juice peroxidase inactivation. Journal of Food Engineering, 2020, 284, 110066.	2.7	13
9	Effect of moderate electric field on peroxidase activity, phenolic compounds and color during ohmic heating of sugarcane juice. Journal of Food Processing and Preservation, 2019, 43, e14254.	0.9	15
10	Extraction of valuable compounds from Arthrospira platensis using pulsed electric field treatment. Bioresource Technology, 2019, 283, 207-212.	4.8	80
11	Effect of moderate electric field on the properties of gelatin capsule residue-based films. Food Hydrocolloids, 2019, 89, 29-35.	5.6	11
12	The effect of temperature and moderate electric field preâ€ŧreatment on carotenoid extraction from <i>Heterochlorella luteoviridis</i> . International Journal of Food Science and Technology, 2019, 54, 396-402.	1.3	8
13	Evaluation of nonthermal effects of electricity on inactivation kinetics of Staphylococcus aureus and Escherichia coli during ohmic heating of infant formula. Journal of Food Safety, 2018, 38, e12372.	1.1	9
14	Effect of ohmic heating parameters on peroxidase inactivation, phenolic compounds degradation and color changes of sugarcane juice. Food and Bioproducts Processing, 2018, 111, 62-71.	1.8	48
15	Ultrasound as an alternative technology to extract carotenoids and lipids from Heterochlorella luteoviridis. Bioresource Technology, 2017, 224, 753-757.	4.8	68
16	Carotenoid and lipid extraction from Heterochlorella luteoviridis using moderate electric field and ethanol. Process Biochemistry, 2016, 51, 1636-1643.	1.8	71
17	Influence of moderate electric field on inactivation kinetics of peroxidase and polyphenol oxidase and on phenolic compounds of sugarcane juice treated by ohmic heating. LWT - Food Science and Technology, 2016, 74, 396-403.	2.5	74
18	Evaluation of non-thermal effects of electricity on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating. Food Chemistry, 2016, 199, 128-134.	4.2	43

GIOVANA DOMENEGHINI

#	Article	IF	CITATIONS
19	Evaluation of non-thermal effects of electricity on anthocyanin degradation during ohmic heating of jaboticaba (Myrciaria cauliflora) juice. Food Chemistry, 2015, 171, 200-205.	4.2	75
20	Ascorbic acid degradation and color changes in acerola pulp during ohmic heating: Effect of electric field frequency. Journal of Food Engineering, 2014, 123, 1-7.	2.7	89
21	Effect of the Electric Field Frequency on Ascorbic Acid Degradation during Thermal Treatment by Ohmic Heating. Journal of Agricultural and Food Chemistry, 2014, 62, 5865-5870.	2.4	27
22	Evaluation of key parameters during construction and operation of an ohmic heating apparatus. Innovative Food Science and Emerging Technologies, 2013, 18, 145-154.	2.7	30
23	Degradation kinetics of anthocyanins in acerola pulp: Comparison between ohmic and conventional heat treatment. Food Chemistry, 2013, 136, 853-857.	4.2	97
24	Study of vitamin C degradation in acerola pulp during ohmic and conventional heat treatment. LWT - Food Science and Technology, 2012, 47, 91-95.	2.5	64
25	OSMOTIC DEHYDRATION OF BANANAS (<i>MUSA SAPIENTUM, SHUM.</i>) IN TERNARY AQUEOUS SOLUTIONS OF SUCROSE AND SODIUM CHLORIDE. Journal of Food Process Engineering, 2012, 35, 149-165.	1.5	8
26	Evaluation of water, sucrose and NaCl effective diffusivities during osmotic dehydration of banana (Musa sapientum, shum.). LWT - Food Science and Technology, 2011, 44, 82-91.	2.5	85
27	Physical properties of acerola and blueberry pulps. Journal of Food Engineering, 2011, 106, 283-289.	2.7	35
28	Mass transfer kinetics during osmotic dehydration of bananas (<i>Musa sapientum</i> , <i>shum.</i>). International Journal of Food Science and Technology, 2010, 45, 2281-2289.	1.3	30
29	Effect of OHMIC heating and ultrasound on functional properties of biodegradable gelatinâ€based films. Polymer Engineering and Science, 0, , .	1.5	2