
Christopher H K Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580530/publications.pdf Version: 2024-02-01

CHRISTORNER HK CHEN

#	Article	IF	CITATIONS
1	The FIELDS Instrument Suite for Solar Probe Plus. Space Science Reviews, 2016, 204, 49-82.	3.7	521
2	Highly structured slow solar wind emerging from an equatorial coronal hole. Nature, 2019, 576, 237-242.	13.7	401
3	IDENTIFICATION OF KINETIC ALFVÉN WAVE TURBULENCE IN THE SOLAR WIND. Astrophysical Journal Letters, 2012, 745, L9.	3.0	250
4	Solar Wind Turbulence and the Role of Ion Instabilities. Space Science Reviews, 2013, 178, 101-139.	3.7	221
5	Recent progress in astrophysical plasma turbulence from solar wind observations. Journal of Plasma Physics, 2016, 82, .	0.7	178
6	The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 53.	3.0	166
7	Nature of Subproton Scale Turbulence in the Solar Wind. Physical Review Letters, 2013, 110, 225002.	2.9	160
8	Anisotropy of Solar Wind Turbulence between Ion and Electron Scales. Physical Review Letters, 2010, 104, 255002.	2.9	159
9	Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade. Astrophysical Journal, Supplement Series, 2020, 246, 39.	3.0	152
10	Power and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 407, L31-L35.	1.2	151
11	lonâ€scale spectral break of solar wind turbulence at high and low beta. Geophysical Research Letters, 2014, 41, 8081-8088.	1.5	137
12	THE SLOW-MODE NATURE OF COMPRESSIBLE WAVE POWER IN SOLAR WIND TURBULENCE. Astrophysical Journal Letters, 2012, 753, L19.	3.0	136
13	Evidence for electron Landau damping in space plasma turbulence. Nature Communications, 2019, 10, 740.	5.8	123
14	Anisotropy of Alfvénic turbulence in the solar wind and numerical simulations. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3219-3226.	1.6	120
15	Nature of Kinetic Scale Turbulence in the Earth's Magnetosheath. Astrophysical Journal, 2017, 842, 122.	1.6	110
16	THREE-DIMENSIONAL STRUCTURE OF SOLAR WIND TURBULENCE. Astrophysical Journal, 2012, 758, 120.	1.6	105
17	<i>Parker Solar Probe</i> Enters the Magnetically Dominated Solar Corona. Physical Review Letters, 2021, 127, 255101.	2.9	104
18	Anisotropy in Space Plasma Turbulence: Solar Wind Observations. Space Science Reviews, 2012, 172, 325-342.	3.7	97

CHRISTOPHER H K CHEN

#	Article	IF	CITATIONS
19	RESIDUAL ENERGY SPECTRUM OF SOLAR WIND TURBULENCE. Astrophysical Journal, 2013, 770, 125.	1.6	95
20	Density Fluctuation Spectrum of Solar Wind Turbulence between Ion and Electron Scales. Physical Review Letters, 2012, 109, 035001.	2.9	89
21	USING SYNTHETIC SPACECRAFT DATA TO INTERPRET COMPRESSIBLE FLUCTUATIONS IN SOLAR WIND TURBULENCE. Astrophysical Journal, 2012, 755, 159.	1.6	89
22	MULTI-SPECIES MEASUREMENTS OF THE FIREHOSE AND MIRROR INSTABILITY THRESHOLDS IN THE SOLAR WIND. Astrophysical Journal Letters, 2016, 825, L26.	3.0	86
23	Anisotropy of Imbalanced Alfvénic Turbulence in Fast Solar Wind. Physical Review Letters, 2011, 106, 045001.	2.9	82
24	ELECTRON HEAT CONDUCTION IN THE SOLAR WIND: TRANSITION FROM SPITZER-HÃ,,RM TO THE COLLISIONLESS LIMIT. Astrophysical Journal Letters, 2013, 769, L22.	3.0	81
25	Ion-scale Electromagnetic Waves in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 66.	3.0	67
26	INTERMITTENCY OF SOLAR WIND DENSITY FLUCTUATIONS FROM ION TO ELECTRON SCALES. Astrophysical Journal Letters, 2014, 789, L8.	3.0	66
27	EXPERIMENTAL DETERMINATION OF WHISTLER WAVE DISPERSION RELATION IN THE SOLAR WIND. Astrophysical Journal Letters, 2016, 829, L16.	3.0	62
28	Cross Helicity Reversals in Magnetic Switchbacks. Astrophysical Journal, Supplement Series, 2020, 246, 67.	3.0	61
29	Inertial-range kinetic turbulence in pressure-anisotropic astrophysical plasmas. Journal of Plasma Physics, 2015, 81, .	0.7	58
30	INTERPRETING POWER ANISOTROPY MEASUREMENTS IN PLASMA TURBULENCE. Astrophysical Journal Letters, 2010, 711, L79-L83.	3.0	55
31	On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind. Astrophysical Journal, 2017, 840, 106.	1.6	53
32	On the 1/f Spectrum in the Solar Wind and Its Connection with Magnetic Compressibility. Astrophysical Journal Letters, 2018, 869, L32.	3.0	53
33	Electric and magnetic spectra from MHD to electron scales in the magnetosheath. Monthly Notices of the Royal Astronomical Society, 2017, 466, 945-951.	1.6	52
34	A Quarter Century of <i>Wind</i> Spacecraft Discoveries. Reviews of Geophysics, 2021, 59, e2020RG000714.	9.0	52
35	FRAME DEPENDENCE OF THE ELECTRIC FIELD SPECTRUM OF SOLAR WIND TURBULENCE. Astrophysical Journal Letters, 2011, 737, L41.	3.0	51
36	SOLAR WIND DENSITY SPECTRA AROUND THE ION SPECTRAL BREAK. Astrophysical Journal, 2015, 803, 107.	1.6	51

#	Article	IF	CITATIONS
37	POWER SPECTRAL DENSITY OF FLUCTUATIONS OF BULK AND THERMAL SPEEDS IN THE SOLAR WIND. Astrophysical Journal, 2016, 825, 121.	1.6	46
38	Alignment and Scaling of Large-Scale Fluctuations in the Solar Wind. Physical Review Letters, 2013, 110, 025003.	2.9	41
39	PROTON HEATING IN SOLAR WIND COMPRESSIBLE TURBULENCE WITH COLLISIONS BETWEEN COUNTER-PROPAGATING WAVES. Astrophysical Journal Letters, 2015, 813, L30.	3.0	40
40	CORRELATIONS AT LARGE SCALES AND THE ONSET OF TURBULENCE IN THE FAST SOLAR WIND. Astrophysical Journal, 2013, 778, 177.	1.6	38
41	The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during <i>PSP</i> Encounter 2. Astrophysical Journal, Supplement Series, 2020, 246, 55.	3.0	36
42	Measures of three-dimensional anisotropy and intermittency in strong Alfvénic turbulence. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2130-2139.	1.6	35
43	Turbulence Characteristics of Switchback and Nonswitchback Intervals Observed byÂParker Solar Probe. Astrophysical Journal Letters, 2020, 904, L30.	3.0	31
44	Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence. Physical Review Letters, 2020, 125, 025102.	2.9	29
45	Anisotropy of Solar Wind Turbulence in the Inner Heliosphere at Kinetic Scales: PSP Observations. Astrophysical Journal Letters, 2021, 915, L8.	3.0	29
46	SPECTRAL BREAKS OF ALFVÉNIC TURBULENCE IN A COLLISIONLESS PLASMA. Astrophysical Journal, 2015, 806, 238.	1.6	28
47	Applicability of Taylor's hypothesis during Parker Solar Probe perihelia. Astronomy and Astrophysics, 2021, 650, A22.	2.1	27
48	Kinetic Turbulence in Astrophysical Plasmas: Waves and/or Structures?. Physical Review X, 2019, 9, .	2.8	26
49	The near-Sun streamer belt solar wind: turbulence and solar wind acceleration. Astronomy and Astrophysics, 2021, 650, L3.	2.1	26
50	Numerical Study of Inertial Kinetic-Alfvén Turbulence. Astrophysical Journal, 2019, 870, 103.	1.6	25
51	The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 30.	3.0	23
52	Multiscale Solar Wind Turbulence Properties inside and near Switchbacks Measured by the Parker Solar Probe. Astrophysical Journal, 2021, 912, 28.	1.6	23
53	Magnetic field rotations in the solar wind at kinetic scales. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 453, L64-L68.	1.2	18
54	The Fluid-like and Kinetic Behavior of Kinetic Alfvén Turbulence in Space Plasma. Astrophysical Journal, 2019, 870, 106.	1.6	18

CHRISTOPHER H K CHEN

#	Article	IF	CITATIONS
55	Scale-dependent Polarization of Solar Wind Velocity Fluctuations at the Inertial and Kinetic Scales. Astrophysical Journal, 2019, 870, 40.	1.6	18
56	Saturn's quasiperiodic magnetohydrodynamic waves. Geophysical Research Letters, 2016, 43, 11,102.	1.5	16
57	Kinetic scale density fluctuations in the solar wind. AIP Conference Proceedings, 2013, , .	0.3	15
58	SPECTRAL ANISOTROPY OF ELSÃ,,SSER VARIABLES IN TWO-DIMENSIONAL WAVE-VECTOR SPACE AS OBSERVED IN THE FAST SOLAR WIND TURBULENCE. Astrophysical Journal Letters, 2016, 816, L24.	3.0	15
59	A Case for Electron-Astrophysics. Experimental Astronomy, 0, , 1.	1.6	11
60	Kinetic‣cale Turbulence in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090783.	1.5	11
61	TESTING THE EFFECTS OF EXPANSION ON SOLAR WIND TURBULENCE. Astrophysical Journal Letters, 2016, 832, L16.	3.0	10
62	Energetic Particles Associated with a Coronal Mass Ejection Shock Interacting with a Convected Magnetic Structure. Astrophysical Journal, 2021, 921, 102.	1.6	10
63	Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 52.	3.0	10
64	Revolutionizing Our Understanding of Particle Energization in Space Plasmas Using On-Board Wave-Particle Correlator Instrumentation. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	1
65	A new way for turbulence to heat the corona. Nature Astronomy, 2022, 6, 637-638.	4.2	0