Yumi Yakiyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580470/publications.pdf

Version: 2024-02-01

430874 434195 1,085 50 18 citations h-index papers

31 g-index 54 54 54 1207 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dielectric response of 1,1-difluorosumanene caused by an in-plane motion. Materials Chemistry Frontiers, 2022, 6, 1752-1758.	5.9	10
2	Synthesis of the C ₇₀ Fragment Buckybowl, Homosumanene, and Heterahomosumanenes via Ring-Expansion Reactions from Sumanenone. Journal of Organic Chemistry, 2022, 87, 2508-2519.	3.2	10
3	Pyridine Ring Modification of Indaneâ€1,3â€dione Dimers for Control of their Crystal Structure. Asian Journal of Organic Chemistry, 2021, 10, 2690-2696.	2.7	2
4	Synthesis of C ₇₀ -fragment buckybowls bearing alkoxy substituents. Beilstein Journal of Organic Chemistry, 2020, 16, 681-690.	2.2	3
5	Control by one drop of solvent: selective preparation of guest release/trap-triggered interconvertible molecular crystals. Chemical Communications, 2020, 56, 9687-9690.	4.1	8
6	Synthesis and Dimerization Properties of Cup―and Bowlâ€shaped Cyclic Trilactams. Asian Journal of Organic Chemistry, 2020, 9, 947-952.	2.7	2
7	Molecular Packing and Solidâ€State Photophysical Properties of 1,3,6,8â€Tetraalkylpyrenes. Chemistry - A European Journal, 2019, 25, 14817-14825.	3.3	17
8	Formation of a Large Confined Spherical Space with a Small Aperture Using Flexible Hexasubstituted Sumanene. Journal of the American Chemical Society, 2019, 141, 18099-18103.	13.7	24
9	Sumanene Hexaester: An Electron-Deficient Buckybowl. Synthesis, 2019, 51, 4576-4581.	2.3	4
10	Generation of "Sumanenylidene― A Groundâ€State Triplet Carbene on a Curved Ï€â€Conjugated Periphery. Chemistry - an Asian Journal, 2019, 14, 1844-1848.	3.3	7
11	Liquid Phase Pulsed Laser Ablation on Pyrite. Chemistry Letters, 2019, 48, 712-714.	1.3	3
12	Thermoelectric and Thermal Transport Properties in Sumanene Crystals. Chemistry Letters, 2018, 47, 524-527.	1.3	10
13	Internal-peripheral Diosmylation of Sumanene Overcoming the Dearomatization Hurdle by the Distortion of the Curved Ĭ€-System. Chemistry Letters, 2018, 47, 736-739.	1.3	6
14	An Organic Mixedâ€Valence Ligand for Multistate Redoxâ€Active Coordination Networks. Angewandte Chemie - International Edition, 2018, 57, 4717-4721.	13.8	13
15	Triazasumanene: An Isoelectronic Heteroanalogue of Sumanene. Bulletin of the Chemical Society of Japan, 2018, 91, 531-537.	3.2	37
16	Tris(2-hydroxyphenyl)triazasumanene: bowl-shaped excited-state intramolecular proton transfer (ESIPT) fluorophore coupled with aggregation-induced enhanced emission (AIEE). Materials Chemistry Frontiers, 2018, 2, 514-519.	5.9	25
17	Universality of the giant Seebeck effect in organic small molecules. Materials Chemistry Frontiers, 2018, 2, 1276-1283.	5.9	31
18	An Organic Mixed-Valence Ligand for Multistate Redox-Active Coordination Networks. Angewandte Chemie, 2018, 130, 4807-4811.	2.0	0

#	Article	IF	CITATIONS
19	Nucleophilic Substitution at the Internal Carbon of Sumanene Framework with Inversion of Configuration. Chemistry Letters, 2018, 47, 878-880.	1.3	4
20	A Sumanene-based Aryne, "Sumanyne― Chemistry Letters, 2017, 46, 446-448.	1.3	7
21	Size-Controlled Preparation of Gold Nanoclusters on Hydroxyapatite Through Trans-Deposition Method. Journal of Nanoscience and Nanotechnology, 2017, 17, 4649-4657.	0.9	8
22	Partially Fluoride-Substituted Hydroxyapatite as a Suitable Support for the Gold-Catalyzed Homocoupling of Phenylboronic Acid: An Example of Interface Modification. ACS Catalysis, 2017, 7, 2998-3003.	11.2	18
23	Sumanene derivatives functionalized at the internal carbon. Chemical Communications, 2017, 53, 697-700.	4.1	20
24	The Impact of the Polymer Chain Length on the Catalytic Activity of Poly(N-vinyl-2-pyrrolidone)-supported Gold Nanoclusters. Scientific Reports, 2017, 7, 9579.	3.3	37
25	Synthesis of a C ₇₀ Fragment Buckybowl C ₂₈ H ₁₄ from a C ₆₀ Fragment Sumanene. Chemistry Letters, 2017, 46, 1556-1559.	1.3	21
26	Structural Investigation of Chemiresistive Sensing Mechanism in Redox-Active Porous Coordination Network. Inorganic Chemistry, 2017, 56, 8735-8738.	4.0	14
27	2,3,5,6,8,9-Hexabromosumanene: Synthesis and Its Application to Suzuki–Miyaura Cross-coupling. Chemistry Letters, 2017, 46, 1368-1371.	1.3	20
28	Synthesis of Triaryltriazasumanenes. Chemistry Letters, 2017, 46, 146-148.	1.3	29
29	Selective Formation of Conductive Network by Radical-Induced Oxidation. Journal of the American Chemical Society, 2016, 138, 1776-1779.	13.7	46
30	Crystallinity-dependence of ionic conductivity in the ion pairs of a multi-interactive anion. Chemical Communications, 2016, 52, 3962-3965.	4.1	10
31	Redox-active Diazaphenalenyl-based Molecule and Neutral Radical Formation. Chemistry Letters, 2015, 44, 1131-1133.	1.3	17
32	Formation of a nanometer-thick water layer at high humidity on a dynamic crystalline material composed of multi-interactive molecules. Chemical Communications, 2015, 51, 6828-6831.	4.1	7
33	Crystal Engineering of Coordination Networks Using Multi-interactive Ligands. , 2015, , 223-240.		2
34	Acid/base-regulated reversible electron transfer disproportionation of N–N linked bicarbazole and biacridine derivatives. Chemical Science, 2015, 6, 4160-4173.	7.4	37
35	The diversity of Zn(<scp>ii</scp>) coordination networks composed of multi-interactive ligand TPHAP ^{â°'} via weak intermolecular interaction. CrystEngComm, 2014, 16, 6335-6344.	2.6	14
36	Syntheses, Redox Properties, Self-Assembled Structures, and Charge-Transfer Complexes of Imidazole-and Benzimidazole-Annelated Tetrathiafulvalene Derivatives. Bulletin of the Chemical Society of Japan, 2013, 86, 927-939.	3.2	18

3

#	Article	IF	CITATIONS
37	Crystal surface mediated structure transformation of a kinetic framework composed of multi-interactive ligand TPHAP and Co(ii). Chemical Communications, 2012, 48, 10651.	4.1	31
38	Proton-transfer salts between an EDT-TTF derivative having imidazole-ring and anilic acids: multi-dimensional networks by acid–base hydrogen-bonds, π-stacks and chalcogen atom interactions. CrystEngComm, 2011, 13, 3689.	2.6	17
39	Solutionâ€Stable Triple Helicates of Quaterimidazole: Threeâ€Dimensional Crystal Structures and Optical Resolution by Chiralâ€Column HPLC. European Journal of Inorganic Chemistry, 2011, 2011, 3438-3445.	2.0	15
40	Synthesis, crystal structure, and charge-transfer complexes of TTF derivatives having two imidazole hydrogen-bonding units. Physica B: Condensed Matter, 2010, 405, S41-S44.	2.7	5
41	Triple-Stranded Metallo-Helicates Addressable as Lloyd's Electron Spin Qubits. Journal of the American Chemical Society, 2010, 132, 6944-6946.	13.7	70
42	Supramolecular Architectures and Hydrogen-Bond Directionalities of 4,4′-Biimidazole Metal Complexes Depending on Coordination Geometries. Crystal Growth and Design, 2010, 10, 4898-4905.	3.0	13
43	Molecular electron-spin quantum computers and quantum information processing: pulse-based electron magnetic resonance spin technology applied to matter spin-qubits. Journal of Materials Chemistry, 2009, 19, 3739.	6.7	133
44	Synthesis, crystal structure, and properties of a new hydrogen-bonded electron-donor: 1,6-Dithiapyrene-imidazole. Solid State Sciences, 2008, 10, 1720-1723.	3.2	9
45	Hydrogen-Bond Architectures of Protonated 4,4′-Biimidazolium Derivatives and Oligo(imidazolium)s in Charge-Transfer Salts with Tetracyanoquinodimethane. Crystal Growth and Design, 2008, 8, 3058-3065.	3.0	21
46	A Novel TTF-based Electron-donor with Imidazole-annelation Having Hydrogen-bonding and Proton-transfer Abilities. Chemistry Letters, 2008, 37, 24-25.	1.3	20
47	TTF–Cytosine Dyad as an Electron-donor Molecule Having Proton-accepting Ability: Formation of Hemiprotonated Cytosine Dimer in I3â~' Salt. Chemistry Letters, 2007, 36, 1102-1103.	1.3	22
48	Zwitterionic Ï€-radical involving EDT-TTF-imidazole and F4TCNQ: redox properties and self-assembled structure by hydrogen-bonds and multiple Sâ∢S interactions. Chemical Communications, 2007, , 4009.	4.1	30
49	Hydrogen-Bond Interaction in Organic Conductors:  Redox Activation, Molecular Recognition, Structural Regulation, and Proton Transfer in Donorâ Acceptor Charge-Transfer Complexes of	13.7	142

Multidimensional Networks of π-Conjugated Oligomers:  Crystal Structures of 4,4â€~:2â€~,2â€~ â€~:4â€~ â€~,4â€~â€~@pper Complexes. Growth and Design, 2006, 6, 1043-1047.

TTF-Imidazole. Journal of the American Chemical Society, 2007, 129, 10837-10846.