Nicola Ferralis

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/9580424/publications.pdf
Version: 2024-02-01

Atoms to fibers: Identifying novel processing methods in the synthesis of pitch-based carbon fibers.
Science Advances, 2022, 8, eabn1905.

4 Highly Conductive and Permeable Nanocomposite Ultrafiltration Membranes Using Laser-Reduced
$5 \quad$ Carbon fiber synthesis from pitch: Insights from ReaxFF based molecular dynamics simulations.
(Passive Sub-Ambient Cooling from a Transparent Evaporation-Insulation Bilayer. Joule, 2020, 4, 2693-2701.

7 Laser-Induced Tar-Mediated Sintering of Metals and Refractory Carbides in Air. ACS Nano, 2020, 14,
10413-10420.
$14.6 \quad 9$
$8 \quad$ Laser-engineered heavy hydrocarbons: Old materials with new opportunities. Science Advances, 2020,
6, eaaz5231.
$10.3 \quad 40$

9 Structural evolutions of small aromatic mixtures under extreme temperature conditions: Insights
9 from ReaxFF molecular dynamics investigations. Carbon, 2019, 155, 309-319.

Charge Transport in Highly Heterogeneous Natural Carbonaceous Materials. Advanced Functional
Materials, 2019, 29, 1904283.
14.95
$11 \quad$ Materials, 2019, 31, e1900331.
$21.0 \quad 13$

Organo-mineral associations in chert of the 3.5 Ga Mount Ada Basalt raise questions about the origin
12 of organic matter in Paleoarchean hydrothermally influenced sediments. Scientific Reports, 2019, 9,
3.3

13 16712.

Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds.
Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2640-2645.

Spatially-resolved isotopic study of carbon trapped in â^1/43.43ấ ϵ^{-}Ga Strelley Pool Formation stromatolites.
14 Geochimica Et Cosmochimica Acta, 2018, 223, 21-35.
3.9

26

Process Control of Atomic Layer Deposition Molybdenum Oxide Nucleation and Sulfidation to
6.7

47
15 Large-Area MoS₂ Monolayers. Chemistry of Materials, 2017, 29, 2024-2032.

Rethinking Coal: Thin Films of Solution Processed Natural Carbon Nanoparticles for Electronic
Devices. Nano Letters, 2016, 16, 2951-2957.
9.1

39

Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy.

19	Genome-inspired molecular identification in organic matter via Raman spectroscopy. Carbon, 2016, 101, 361-367.	10.3	24
20	Unintended consequences: Why carbonation can dominate in microscale hydration of calcium silicates. Journal of Materials Research, 2015, 30, 2425-2433.	2.6	1
21	Direct correlation between aromatization of carbon-rich organic matter and its visible electronic absorption edge. Carbon, 2015, 88, 139-147.	10.3	17
22	Acid demineralization with critical point drying: A method for kerogen isolation that preserves microstructure. Fuel, 2014, 135, 492-497.	6.4	43
23	Effect of Electrochemical Charging on Elastoplastic Properties and Fracture Toughness of Li<sub>X<\|sub>CoO<sub>2<\|sub〉. Journal of the Electrochemical Society, 2014, 161, F3084-F3090.	2.9	68
24	Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy. Applied Surface Science, 2014, 320, 441-447.	6.1	11
25	Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. Nature Chemistry, 2014, 6, 441-447.	13.6	261

26 Nanocarbon-Based Photovoltaics. ACS Nano, 2012, 6, 8896-8903.
27 Solar energy generation in three dimensions. Energy and Environmental Science, 2012, 5, 6880. 30.8 73
28
Growth of Epitaxial 3C-SiC Films on $\mathrm{Si}(100)$ via Low Temperature SiC Buffer Layer. Crystal Growth and Design, 2010, 10, 36-39.

32
Tunable in situ growth of porous cubic silicon carbide thin films via methyltrichlorosilane-based
chemical vapor deposition. Applied Physics Letters, 2009, 95, 101901.
3.3 5
Real-Time Observation of Reactive Spreading of Gold on Silicon. Physical Review Letters, 2009, 103, 256102. 7.8 19
30
2.2 12Experimental Investigation of Silicon Surface Migration in Low Pressure Nonreducing GasEnvironments. Electrochemical and Solid-State Letters, 2009, 12, H437.Resolving sub-nm steps with a low-voltage miniature scanning electron microscope. MicroelectronicEngineering, 2009, 86, 1004-1008.
2.43Debye temperature of the 10-fold d-Alâ€"Niâ€ ${ }^{\text {" }}$ Co quasicrystal surface. Surface Science, 2008, 602,1.91
1223-1226.
Structure and Morphology of Annealed Gold Films Galvanically Displaced on the Si(111) Surface.
Journal of Physical Chemistry C, 2007, 111, 7508-7513.

41	Evolution of Topological Order in Xe Films on a Quasicrystal Surface. Physical Review Letters, 2005, 95, 136104.	7.8	40
42	The adsorption of Xe and Ar on quasicrystalline Alâ€"Niâ€"Co. Journal of Physics Condensed Matter, 2004, 16, S2911-S2921.	1.8	21
43	Dynamical low-energy electron diffraction study of graphite (0001)-(â^š $\left.3 \tilde{A}-\hat{a}^{\wedge}{ }^{\wedge} 3\right) R 30 \hat{A}^{\circ}-$ Xe. Surface Science, 2004, 548, 157-162.	1.9	30
44	The adsorption sites of rare gases on metallic surfaces: a review. Journal of Physics Condensed Matter, 2004, 16, S2839-S2862.	1.8	67
45	Diffraction from one- and two-dimensional quasicrystalline gratings. American Journal of Physics, 2004, 72, 1241-1246.	0.7	23
46	Low-energy electron diffraction from quasicrystal surfaces. Journal of Physics Condensed Matter, 2003, 15, R63-R81.	1.8	35
47	LEED study of the potassium-induced reconstruction of $\mathrm{Cu}(110)$. Journal of Physics Condensed Matter, 2001, 13, 3961-3967.	1.8	2

