
M Kästner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580386/publications.pdf Version: 2024-02-01

MKÃOTNED

#	Article	IF	CITATIONS
1	Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances, 2003, 22, 93-117.	6.0	934
2	SOM genesis: microbial biomass as a significant source. Biogeochemistry, 2012, 111, 41-55.	1.7	763
3	Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 2019, 25, 3578-3590.	4.2	658
4	Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Applied Microbiology and Biotechnology, 1994, 41, 267-273.	1.7	272
5	Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. Journal of Hazardous Materials, 2011, 198, 22-30.	6.5	260
6	Impact of Inoculation Protocols, Salinity, and pH on the Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) and Survival of PAH-Degrading Bacteria Introduced into Soil. Applied and Environmental Microbiology, 1998, 64, 359-362.	1.4	207
7	Classification and Modelling of Nonextractable Residue (NER) Formation of Xenobiotics in Soil – A Synthesis. Critical Reviews in Environmental Science and Technology, 2014, 44, 2107-2171.	6.6	198
8	Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Applied Microbiology and Biotechnology, 1996, 44, 668-675.	1.7	196
9	Identification of Bacterial Micropredators Distinctively Active in a Soil Microbial Food Web. Applied and Environmental Microbiology, 2006, 72, 5342-5348.	1.4	191
10	Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate. Water Research, 2003, 37, 4236-4242.	5.3	182
11	Microbial Processes of Heavy Metal Removal from Carbon-Deficient Effluents in Constructed Wetlands. Engineering in Life Sciences, 2004, 4, 403-411.	2.0	169
12	Effect of plants and filter materials on bacteria removal in pilot-scale constructed wetlands. Water Research, 2005, 39, 1361-1373.	5.3	165
13	Soilâ€carbon preservation through habitat constraints and biological limitations on decomposer activity. Journal of Plant Nutrition and Soil Science, 2008, 171, 27-35.	1.1	156
14	Fate of gram-negative bacterial biomass in soil—mineralization and contribution to SOM. Soil Biology and Biochemistry, 2006, 38, 2860-2870.	4.2	155
15	Fate of microbial biomass-derived amino acids in soil and their contribution to soil organic matter. Organic Geochemistry, 2009, 40, 978-985.	0.9	141
16	Formation of Bound Residues during Microbial Degradation of [¹⁴ C]Anthracene in Soil. Applied and Environmental Microbiology, 1999, 65, 1834-1842.	1.4	140
17	Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger. Soil Biology and Biochemistry, 2011, 43, 1936-1942.	4.2	137
18	Stable Isotope Fractionation of Tetrachloroethene during Reductive Dechlorination by Sulfurospirillum multivorans and Desulfitobacterium sp. Strain PCE-S and Abiotic Reactions with Cyanocobalamin. Applied and Environmental Microbiology, 2005, 71, 3413-3419.	1.4	130

M KÃ**y**tner

#	Article	lF	CITATIONS
19	Fate of bacterial biomass derived fatty acids in soil and their contribution to soil organic matter. Organic Geochemistry, 2009, 40, 29-37.	0.9	130
20	Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructed wetland. Water Research, 2005, 39, 248-256.	5.3	129
21	Hydroponic root mats for wastewater treatment—a review. Environmental Science and Pollution Research, 2016, 23, 15911-15928.	2.7	129
22	Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Applied Microbiology and Biotechnology, 2016, 100, 3433-3449.	1.7	121
23	Formation and Fate of Bound Residues from Microbial Biomass during 2,4-D Degradation in Soil. Environmental Science & Technology, 2011, 45, 999-1006.	4.6	120
24	Current approaches for the assessment of in situ biodegradation. Applied Microbiology and Biotechnology, 2010, 86, 839-852.	1.7	118
25	(Bio)degradation of glyphosate in water-sediment microcosms – A stable isotope co-labeling approach. Water Research, 2016, 99, 91-100.	5.3	118
26	Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nature Communications, 2017, 8, 15472.	5.8	109
27	Insignificant acute toxicity of TiO2 nanoparticles to willow trees. Journal of Soils and Sediments, 2009, 9, 46-53.	1.5	107
28	Plant–microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Current Opinion in Biotechnology, 2014, 27, 168-175.	3.3	100
29	Fate of 14C-labeled anthracene and hexadecane in compost-manured soil. Applied Microbiology and Biotechnology, 1995, 43, 1128-1135.	1.7	96
30	Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland. Water Research, 2005, 39, 4643-4650.	5.3	95
31	Removal of bacteria by filtration in planted and non-planted sand columns. Water Research, 2007, 41, 159-167.	5.3	92
32	Removal of dichloromethane from waste gases in one- and two-liquid-phase stirred tank bioreactors and biotrickling filters. Water Research, 2009, 43, 11-20.	5.3	91
33	Assimilation of CO2 by soil microorganisms and transformation into soil organic matter. Organic Geochemistry, 2004, 35, 1015-1024.	0.9	90
34	Non-phototrophic CO 2 fixation by soil microorganisms. Plant and Soil, 2005, 269, 193-203.	1.8	90
35	The degradation of bisphenol A by the newly isolated bacterium Cupriavidus basilensis JF1 can be enhanced by biostimulation with phenol. International Biodeterioration and Biodegradation, 2010, 64, 324-330.	1.9	88
36	Metabolites of xenobiotica and mineral oil constituents linked to macromolecular organic matter in polluted environments. Organic Geochemistry, 1994, 22, 671-IN10.	0.9	82

#	Article	IF	CITATIONS
37	Diurnal redox fluctuation and microbial activity in the rhizosphere of wetland plants. European Journal of Soil Biology, 2008, 44, 324-333.	1.4	82
38	Microbial cell-envelope fragments and the formation of soil organic matter: a case study from a glacier forefield. Biogeochemistry, 2013, 113, 595-612.	1.7	82
39	In Situ Assessment of Biodegradation Potential Using Biotraps Amended with13C-Labeled Benzene or Toluene. Environmental Science & Technology, 2005, 39, 4983-4989.	4.6	81
40	Evaluation of a new, effective method to extract polycyclic aromatic hydrocarbons from soil samples. Chemosphere, 1994, 28, 683-692.	4.2	79
41	Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation. Soil Biology and Biochemistry, 2015, 88, 120-127.	4.2	75
42	Microbial degradation of the pharmaceutical ibuprofen and the herbicide 2,4-D in water and soil — Use and limits of data obtained from aqueous systems for predicting their fate in soil. Science of the Total Environment, 2013, 444, 32-42.	3.9	73
43	A unified approach for including non-extractable residues (NER) of chemicals and pesticides in the assessment of persistence. Environmental Sciences Europe, 2018, 30, 51.	2.6	69
44	Assessment of in situ biodegradation of monochlorobenzene in contaminated groundwater treated in a constructed wetland. Environmental Pollution, 2007, 148, 428-437.	3.7	68
45	Field applicability of Compound-Specific Isotope Analysis (CSIA) for characterization and quantification of in situ contaminant degradation in aquifers. Applied Microbiology and Biotechnology, 2012, 94, 1401-1421.	1.7	67
46	A Multitracer Test Proving the Reliability of Rayleigh Equation-Based Approach for Assessing Biodegradation in a BTEX Contaminated Aquifer. Environmental Science & Technology, 2006, 40, 4245-4252.	4.6	66
47	Monitoring in situ biodegradation of benzene and toluene by stable carbon isotope fractionation. Environmental Toxicology and Chemistry, 2005, 24, 51-60.	2.2	65
48	Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/Wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers. Chemosphere, 2007, 67, 300-311.	4.2	65
49	Structure of a laccase-mediated product of coupling of 2,4-diamino-6-nitrotoluene to guaiacol, a model for coupling of 2,4,6-trinitrotoluene metabolites to a humic organic soil matrix. Applied and Environmental Microbiology, 1997, 63, 2560-2565.	1.4	64
50	Abilities of Helophyte Species to Release Oxygen into Rhizospheres with Varying Redox Conditions in Laboratory-Scale Hydroponic Systems. International Journal of Phytoremediation, 2002, 4, 1-15.	1.7	63
51	Enrichment and characterization of a sulfate-reducing toluene-degrading microbial consortium by combining <i>in situ</i> microcosms and stable isotope probing techniques. FEMS Microbiology Ecology, 2010, 71, 237-246.	1.3	63
52	Treatment of chlorobenzene-contaminated groundwater in a pilot-scale constructed wetland. Ecological Engineering, 2008, 33, 45-53.	1.6	62
53	Hydrolysis of cellobiose by β-glucosidase in the presence of soil minerals – Interactions at solid–liquid interfaces and effects on enzyme activity levels. Soil Biology and Biochemistry, 2010, 42, 2203-2210.	4.2	61
54	Differences of heterotrophic ¹³ CO ₂ assimilation by <i>Pseudomonas knackmussii</i> strain B13 and <i>Rhodococcus opacus</i> 1CP and potential impact on biomarker stable isotope probing. Environmental Microbiology, 2008, 10, 1641-1651.	1.8	58

#	Article	IF	CITATIONS
55	Different influences of DNA purity indices and quantity on PCR-based DGGE and functional gene microarray in soil microbial community study. Applied Microbiology and Biotechnology, 2009, 82, 983-993.	1.7	58
56	In Vivo Emission of Dinitrogen by Earthworms via Denitrifying Bacteria in the Gut. Applied and Environmental Microbiology, 2006, 72, 1013-1018.	1.4	57
57	Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands. Environmental Pollution, 2011, 159, 3769-3776.	3.7	56
58	In-situ biodegradation of tetrachloroethene and trichloroethene in contaminated aquifers monitored by stable isotope fractionation. Isotopes in Environmental and Health Studies, 2003, 39, 113-124.	0.5	55
59	Microbial Necromass in Soils—Linking Microbes to Soil Processes and Carbon Turnover. Frontiers in Environmental Science, 2021, 9, .	1.5	53
60	Soil wettability can be explained by the chemical composition of particle interfaces - An XPS study. Scientific Reports, 2017, 7, 42877.	1.6	51
61	Contribution of microorganisms to non-extractable residue formation during biodegradation of ibuprofen in soil. Science of the Total Environment, 2013, 445-446, 377-384.	3.9	50
62	Impact of bacterial activity on turnover of insoluble hydrophobic substrates (phenanthrene and) Tj ETQq0 0 0 rgB Materials, 2016, 306, 105-114.	[Overloc 6.5	k 10 Tf 50 4 50
63	Dynamics of sulphur compounds in horizontal sub-surface flow laboratory-scale constructed wetlands treating artificial sewage. Water Research, 2010, 44, 6175-6185.	5.3	48
64	Performance evaluation of different horizontal subsurface flow wetland types by characterization of flow behavior, mass removal and depth-dependent contaminant load. Water Research, 2013, 47, 769-780.	5.3	48
65	In situ microcosms to evaluate natural attenuation potentials in contaminated aquifers. Organic Geochemistry, 2006, 37, 1394-1410.	0.9	47
66	ISOTOPIC FRACTIONATION INDICATES ANAEROBIC MONOCHLOROBENZENE BIODEGRADATION. Environmental Toxicology and Chemistry, 2005, 24, 1315.	2.2	46
67	Slow Sand Filtration of Secondary Clarifier Effluent for Wastewater Reuse. Environmental Science & Technology, 2009, 43, 5896-5901.	4.6	46
68	Rapid screening of PAH-residues in bioremediated soils. Chemosphere, 1995, 31, 3991-3999.	4.2	45
69	Formation of Nonextractable Soil Residues:Â A Stable Isotope Approach. Environmental Science & Technology, 1999, 33, 3761-3767.	4.6	45
70	Mycelium-Like Networks Increase Bacterial Dispersal, Growth, and Biodegradation in a Model Ecosystem at Various Water Potentials. Applied and Environmental Microbiology, 2016, 82, 2902-2908.	1.4	42
71	Chlorobenzene removal efficiencies and removal processes in a pilot-scale constructed wetland treating contaminated groundwater. Ecological Engineering, 2011, 37, 903-913.	1.6	41
72	From humic substances to soil organic matter–microbial contributions. In honour of Konrad Haider and James P. Martin for their outstanding research contribution to soil science. Journal of Soils and Sediments, 2015, 15, 1865-1881.	1.5	41

#	Article	IF	CITATIONS
73	Comparative evaluation of pilot scale horizontal subsurface-flow constructed wetlands and plant root mats for treating groundwater contaminated with benzene and MTBE. Journal of Hazardous Materials, 2012, 209-210, 510-515.	6.5	39
74	Sensitive Detection of Anaerobic Monochlorobenzene Degradation Using Stable Isotope Tracers. Environmental Science & Technology, 2007, 41, 3836-3842.	4.6	37
75	The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research. Science of the Total Environment, 2016, 568, 1076-1085.	3.9	37
76	Title is missing!. Water, Air and Soil Pollution, 2002, 2, 141-152.	0.8	36
77	Assessment of Microbial In Situ Activity in Contaminated Aquifers. Engineering in Life Sciences, 2006, 6, 234-251.	2.0	36
78	Performance Evaluation Using a Three Compartment Mass Balance for the Removal of Volatile Organic Compounds in Pilot Scale Constructed Wetlands. Environmental Science & Technology, 2011, 45, 8467-8474.	4.6	36
79	Anaerobic co-reduction of chromate and nitrate by bacterial cultures of Staphylococcus epidermidis L-02. Journal of Industrial Microbiology and Biotechnology, 2005, 32, 409-414.	1.4	35
80	Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to <i>Pseudomonas putida</i> DOT-T1E. Letters in Applied Microbiology, 2009, 48, 756-62.	1.0	34
81	FATE AND METABOLISM OF [15N]2,4,6-TRINITROTOLUENE IN SOIL. Environmental Toxicology and Chemistry, 2004, 23, 1852.	2.2	33
82	Prediction of the Formation of Biogenic Nonextractable Residues during Degradation of Environmental Chemicals from Biomass Yields. Environmental Science & Technology, 2018, 52, 663-672.	4.6	32
83	Turnover of gram-negative bacterial biomass-derived carbon through the microbial food web of an agricultural soil. Soil Biology and Biochemistry, 2021, 152, 108070.	4.2	32
84	Stable carbon isotope fractionation during degradation of dichloromethane by methylotrophic bacteria. Environmental Microbiology, 2006, 8, 156-164.	1.8	31
85	Sulphur transformation and deposition in the rhizosphere of Juncus effusus in a laboratory-scale constructed wetland. Environmental Pollution, 2008, 155, 125-131.	3.7	31
86	Operation of a Universal Test Unit for Planted Soil Filters – Planted Fixed Bed Reactor. Engineering in Life Sciences, 2002, 2, 311-315.	2.0	30
87	The contribution of biogas residues to soil organic matter formation and CO2 emissions in an arable soil. Soil Biology and Biochemistry, 2015, 86, 108-115.	4.2	29
88	Degradation of anthracene and pyrene supplied by microcrystals and non-aqueous-phase liquids. Applied Microbiology and Biotechnology, 2005, 67, 569-576.	1.7	28
89	Incorporation of carbon originating from CO2into different compounds of soil microbial biomass and soil organic matterâ€. Isotopes in Environmental and Health Studies, 2005, 41, 135-140.	0.5	28
90	Modeling of slow sand filtration for disinfection of secondary clarifier effluent. Water Research, 2010, 44, 159-166.	5.3	28

M KÃ**y**tner

#	Article	IF	CITATIONS
91	Experimental Results and Integrated Modeling of Bacterial Growth on an Insoluble Hydrophobic Substrate (Phenanthrene). Environmental Science & Technology, 2014, 48, 8717-8726.	4.6	28
92	Molecular characterization of dichloromethane-degrading Hyphomicrobium strains using 16S rDNA and DCM dehalogenase gene sequences. Systematic and Applied Microbiology, 2005, 28, 582-587.	1.2	27
93	Changes in Fatty Acid Composition of Chromohalobacter israelensis with Varying Salt Concentrations. Current Microbiology, 2005, 50, 151-154.	1.0	27
94	Effect of vegetation in pilot-scale horizontal subsurface flow constructed wetlands treating sulphate rich groundwater contaminated with a low and high chlorinated hydrocarbon. Chemosphere, 2012, 89, 724-731.	4.2	27
95	Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Applied Microbiology and Biotechnology, 1994, 41, 267-273.	1.7	27
96	Removal of pathogen indicators from secondary effluent using slow sand filtration: Optimization approaches. Ecological Engineering, 2016, 95, 635-644.	1.6	26
97	Modelling functional resilience of microbial ecosystems: Analysis of governing processes. Environmental Modelling and Software, 2017, 89, 31-39.	1.9	26
98	Characteristics of PAH tar oil contaminated soils—Black particles, resins and implications for treatment strategies. Journal of Hazardous Materials, 2017, 327, 206-215.	6.5	26
99	FATE AND STABILITY OF 14C-LABELED 2,4,6-TRINITROTOLUENE IN CONTAMINATED SOIL FOLLOWING MICROBIAL BIOREMEDIATION PROCESSES. Environmental Toxicology and Chemistry, 2004, 23, 2049.	2.2	25
100	Selective elimination of bacterial faecal indicators in the Schmutzdecke of slow sand filtration columns. Applied Microbiology and Biotechnology, 2015, 99, 10323-10332.	1.7	24
101	Response of ammonium removal to growth and transpiration of Juncus effusus during the treatment of artificial sewage in laboratory-scale wetlands. Water Research, 2013, 47, 4265-4273.	5.3	23
102	(Multiple) Isotope probing approaches to trace the fate of environmental chemicals and the formation of non-extractable â€~bound' residues. Current Opinion in Biotechnology, 2016, 41, 73-82.	3.3	23
103	Microbial Turnover of Glyphosate to Biomass: Utilization as Nutrient Source and Formation of AMPA and Biogenic NER in an OECD 308 Test. Environmental Science & amp; Technology, 2019, 53, 5838-5847.	4.6	23
104	Treatment of an artificial sulphide containing wastewater in subsurface horizontal flow laboratory-scale constructed wetlands. Ecological Engineering, 2007, 31, 259-268.	1.6	22
105	Retention and distribution of pesticides in planted filter microcosms designed for treatment of agricultural surface runoff. Science of the Total Environment, 2021, 778, 146114.	3.9	22
106	Batch methanogenic fermentation experiments of wastewater from a brown coal low-temperature coke plant. Journal of Environmental Sciences, 2010, 22, 192-197.	3.2	21
107	Dynamics of Fe(II), sulphur and phosphate in pilot-scale constructed wetlands treating a sulphate-rich chlorinated hydrocarbon contaminated groundwater. Water Research, 2012, 46, 1923-1932.	5.3	20
108	Bacterial impact on the wetting properties of soil minerals. Biogeochemistry, 2015, 122, 269-280.	1.7	20

#	Article	IF	CITATIONS
109	Degradation of 13C-labeled pyrene in soil-compost mixtures and fertilized soil. Applied Microbiology and Biotechnology, 2015, 99, 9813-9824.	1.7	20
110	Superabsorbent polymer as a supplement substrate of constructed wetland to retain pesticides from agricultural runoff. Water Research, 2021, 207, 117776.	5.3	20
111	The single-nucleotide primer extension (SNuPE) method for the multiplex detection of various DNA sequences: from detection of point mutations to microbial ecology. Biochemical Society Transactions, 2009, 37, 454-459.	1.6	19
112	Transformation of metamitron in water-sediment systems: Detailed insight into the biodegradation processes. Science of the Total Environment, 2017, 578, 100-108.	3.9	19
113	Effectiveness of Various Small-Scale Constructed Wetland Designs for the Removal of Iron and Zinc from Acid Mine Drainage under Field Conditions. Engineering in Life Sciences, 2006, 6, 584-592.	2.0	18
114	SOM and Microbes—What Is Left From Microbial Life. , 2018, , 125-163.		18
115	Development of a Fatty Acid and RNA Stable Isotope Probing-Based Method for Tracking Protist Grazing on Bacteria in Wastewater. Applied and Environmental Microbiology, 2010, 76, 8222-8230.	1.4	17
116	Microbial communities in pyrene amended soil–compost mixture and fertilized soil. AMB Express, 2017, 7, 7.	1.4	17
117	Carbon isotope fractionation during cis?trans isomerization of unsaturated fatty acids in Pseudomonas putida. Applied Microbiology and Biotechnology, 2004, 66, 285-290.	1.7	16
118	Bacterial Dispersal Promotes Biodegradation in Heterogeneous Systems Exposed to Osmotic Stress. Frontiers in Microbiology, 2016, 7, 1214.	1.5	16
119	Microbial growth yield estimates from thermodynamics and its importance for degradation of pesticides and formation of biogenic non-extractable residues. SAR and QSAR in Environmental Research, 2017, 28, 629-650.	1.0	16
120	Dynamics of Arsenic Species in Laboratoryâ€5cale Horizontal Subsurfaceâ€Flow Constructed Wetlands Treating an Artificial Wastewater. Engineering in Life Sciences, 2008, 8, 603-611.	2.0	15
121	Spatiotemporal disturbance characteristics determine functional stability and collapse risk of simulated microbial ecosystems. Scientific Reports, 2018, 8, 9488.	1.6	15
122	Effects of sulphur cycle processes on ammonia removal in a laboratory-scale constructed wetland planted with Juncus effusus. Ecological Engineering, 2008, 34, 162-167.	1.6	14
123	Methods for visualising active microbial benzene degraders in in situ microcosms. Applied Microbiology and Biotechnology, 2015, 99, 957-968.	1.7	14
124	Single-Nucleotide Primer Extension Assay for Detection and Sequence Typing of " <i>Dehalococcoides</i> ―spp. Applied and Environmental Microbiology, 2008, 74, 300-304.	1.4	13
125	Evaluation of Single-Nucleotide Primer Extension for Detection and Typing of Phylogenetic Markers Used for Investigation of Microbial Communities. Applied and Environmental Microbiology, 2009, 75, 2850-2860.	1.4	13
126	Influence of Helophytes on Redox Reactions in their Rhizosphere. , 2006, , 69-82.		11

M KÃ**y**tner

#	Article	IF	CITATIONS
127	Biodegradation of chlorobenzene in a constructed wetland treating contaminated groundwater. Water Science and Technology, 2007, 56, 57-62.	1.2	11
128	Fate of pendimethalin in soil and characterization of non-extractable residues (NER). Science of the Total Environment, 2021, 753, 141870.	3.9	11
129	Poreâ€scale modeling of microbial activity: What we have and what we need. Vadose Zone Journal, 2021, 20, e20087.	1.3	11
130	ModelPROBE: model driven soil probing, site assessment and evaluation. Reviews in Environmental Science and Biotechnology, 2009, 8, 131-136.	3.9	10
131	Hexadecane and pristane degradation potential at the level of the aquifer—evidence from sediment incubations compared to in situ microcosms. Environmental Science and Pollution Research, 2014, 21, 9081-9094.	2.7	10
132	Treatment of a sulfate-rich groundwater contaminated with perchloroethene in a hydroponic plant root mat filter and a horizontal subsurface flow constructed wetland at pilot-scale. Chemosphere, 2014, 117, 178-184.	4.2	10
133	Adaptation of a Constructed Wetland to Simultaneous Treatment of Monochlorobenzene and Perchloroethene. International Journal of Phytoremediation, 2011, 13, 998-1013.	1.7	9
134	Fate of fatty acids derived from biogas residues in arable soil. Soil Biology and Biochemistry, 2015, 91, 58-64.	4.2	9
135	The dynamics of low-chlorinated benzenes in a pilot-scale constructed wetland and a hydroponic plant root mat treating sulfate-rich groundwater. Environmental Science and Pollution Research, 2015, 22, 3886-3894.	2.7	9
136	Effects of compost, biochar and manure on carbon mineralization of biogas residues applied to soil. European Journal of Soil Science, 2016, 67, 217-225.	1.8	9
137	Functional Resistance to Recurrent Spatially Heterogeneous Disturbances Is Facilitated by Increased Activity of Surviving Bacteria in a Virtual Ecosystem. Frontiers in Microbiology, 2018, 9, 734.	1.5	9
138	Microbial PAH Degradation in Soil Material from a Contaminated Site — Mass Balance Experiments with Pleurotus Ostreatus and Different 14C-PAH. Soil & Environment, 1995, , 377-378.	0.0	9
139	ENVIRONMENTAL POLLUTION BY WASTEWATER FROM BROWN COAL PROCESSING \hat{A}_7 A REMEDIATION CASE STUDY IN GERMANY. Journal of Environmental Engineering and Landscape Management, 2014, 22, 71-83.	0.4	8
140	Characterisation of microbial activity in the framework of natural attenuation without groundwater monitoring wells?: a new Direct-Push probe. Environmental Science and Pollution Research, 2014, 21, 9002-9015.	2.7	8
141	Identification of benzene-degrading Proteobacteria in a constructed wetland by employing in situ microcosms and RNA-stable isotope probing. Applied Microbiology and Biotechnology, 2020, 104, 1809-1820.	1.7	8
142	Novel approach using substrate-mediated radiolabelling of RNA to link metabolic function with the structure of microbial communities. FEMS Microbiology Letters, 2007, 274, 154-161.	0.7	7
143	New approaches for low-invasive contaminated site characterization, monitoring and modelling. Environmental Science and Pollution Research, 2014, 21, 8893-8896.	2.7	7
144	Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Applied Microbiology and Biotechnology, 1996, 44, 668-675.	1.7	6

#	Article	IF	CITATIONS
145	Redox Dynamics of Arsenic Species in the Rootâ€Near Environment of <i>Juncus effusus</i> Investigated in a Macroâ€Gradientâ€Free Rooted Gravel Bed Reactor. Engineering in Life Sciences, 2008, 8, 612-621.	2.0	5
146	Response of Removal Rates to Various Organic Carbon and Ammonium Loads in Laboratory‧cale Constructed Wetlands Treating Artificial Wastewater. Water Environment Research, 2013, 85, 44-53.	1.3	5
147	Live and death of streptomyces in soil-what happens to the biomass?. Journal of Plant Nutrition and Soil Science, 2013, 176, 665-673.	1.1	5
148	Linking atomic force microscopy with nanothermal analysis to assess microspatial distribution of material characteristics in young soils. Journal of Plant Nutrition and Soil Science, 2016, 179, 48-59.	1.1	5
149	The Status of Research on Constructed Wetlands. NATO Science for Peace and Security Series C: Environmental Security, 2012, , 155-171.	0.1	5
150	Organic Pollutants Associated with Macromolecular Soil Organic Matter and the Formation of Bound Residues. , 1999, , 297-326.		5
151	Sequence Specific Primer Extension RNA Analysis (SeSPERA) for the investigation of substrate utilization of microbial communities. Journal of Microbiological Methods, 2009, 79, 111-113.	0.7	4
152	In Situ Microcosm Studies toâ \in ‰Characterize Microbial Processes in the Field. , 2010, , 3503-3511.		4
153	Effectiveness of Differently Designed Small-Scale Constructed Wetlands to Decrease the Acidity of Acid Mine Drainage under Field Conditions. Engineering in Life Sciences, 2006, 6, 394-398.	2.0	3
154	Removal of monochlorobenzene and perchloroethene in wetland rhizosphere model systems. Engineering in Life Sciences, 2011, 11, 298-308.	2.0	3
155	Formation of Residues of Organic Pollutants Within the Soil Matrix — Mechanisms and Stability. , 2001, , 219-251.		3
156	Critical evaluation of the microbial turnover to biomass approach for the estimation of biogenic non-extractable residues (NER). Environmental Sciences Europe, 2022, 34, .	2.6	3
157	Pflanzenklänlagen – Zukunftspotenzial und Forschungsbedarf. Chemie-Ingenieur-Technik, 2008, 80, 1785-1793.	0.4	1
158	Environmental Fate Assessment of Chemicals and the Formation of Biogenic Non-extractable Residues (bioNER). Handbook of Environmental Chemistry, 2020, , 81-111.	0.2	1
159	Editorial: Eng. Life Sci. 3/2006. Engineering in Life Sciences, 2006, 6, 209-210.	2.0	0
160	Perspectives of Stable Isotope Approaches in Bioremediation Research. , 2003, , 367-372.		0