List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580374/publications.pdf Version: 2024-02-01

DANIEL H ROTHMAN

#	Article	IF	CITATIONS
1	The Balance of Nature: A Global Marine Perspective. Annual Review of Marine Science, 2022, 14, 49-73.	5.1	4
2	Oxidative metabolisms catalyzed Earth's oxygenation. Nature Communications, 2022, 13, 1328.	5.8	17
3	Rate-induced collapse in evolutionary systems. Journal of the Royal Society Interface, 2022, 19, .	1.5	2
4	Asymmetry of extreme Cenozoic climate–carbon cycle events. Science Advances, 2021, 7, .	4.7	5
5	Routes to global glaciation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200303.	1.0	12
6	Characteristic disruptions of an excitable carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14813-14822.	3.3	27
7	Mineral protection regulates long-term global preservation of natural organic carbon. Nature, 2019, 570, 228-231.	13.7	354
8	Shapes of river networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180081.	1.0	17
9	Climate's watermark in the geometry of stream networks. Geophysical Research Letters, 2017, 44, 2272-2280.	1.5	79
10	Thresholds of catastrophe in the Earth system. Science Advances, 2017, 3, e1700906.	4.7	68
11	Symmetric rearrangement of groundwater-fed streams. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170539.	1.0	4
12	Technical note: An inverse method to relate organic carbon reactivity to isotope composition from serial oxidation. Biogeosciences, 2017, 14, 5099-5114.	1.3	36
13	Path selection in the growth of rivers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14132-14137.	3.3	49
14	Earth's carbon cycle: A mathematical perspective. Bulletin of the American Mathematical Society, 2014, 52, 47-64.	0.8	21
15	Hidden cycle of dissolved organic carbon in the deep ocean. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16706-16711.	3.3	136
16	Methanogenic burst in the end-Permian carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5462-5467.	3.3	126
17	Carbon transit through degradation networks. Ecological Monographs, 2014, 84, 109-129.	2.4	4
18	Age dependence of mineral dissolution and precipitation rates. Global Biogeochemical Cycles, 2013, 27, 906-919.	1.9	26

#	Article	IF	CITATIONS
19	Bifurcation dynamics of natural drainage networks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120365.	1.6	56
20	Common structure in the heterogeneity of plant-matter decay. Journal of the Royal Society Interface, 2012, 9, 2255-2267.	1.5	37
21	Ramification of stream networks. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20832-20836.	3.3	104
22	Calibrating the End-Permian Mass Extinction. Science, 2011, 334, 1367-1372.	6.0	648
23	Reaction–diffusion model of nutrient uptake in a biofilm: Theory and experiment. Journal of Theoretical Biology, 2011, 289, 90-95.	0.8	32
24	Random channel kinetics for reaction–diffusion systems. Physica D: Nonlinear Phenomena, 2010, 239, 739-745.	1.3	4
25	Biophysical basis for the geometry of conical stromatolites. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9956-9961.	3.3	76
26	Clay mineralogy, organic carbon burial, and redox evolution in Proterozoic oceans. Geochimica Et Cosmochimica Acta, 2010, 74, 1579-1592.	1.6	94
27	Growth laws for channel networks incised byÂgroundwater flow. Nature Geoscience, 2009, 2, 193-196.	5.4	88
28	Erosion of a granular bed driven by laminar fluid flow. Journal of Fluid Mechanics, 2008, 605, 47-58.	1.4	58
29	Physical Model for the Decay and Preservation of Marine Organic Carbon. Science, 2007, 316, 1325-1328.	6.0	114
30	Scaling of Dynamic Contact Angles in a Lattice-Boltzmann Model. Physical Review Letters, 2007, 98, 254503.	2.9	49
31	Spontaneous channelization in permeable ground: theory, experiment, and observation. Journal of Fluid Mechanics, 2004, 503, 357-374.	1.4	94
32	Scale-dependence of resource-biodiversity relationships. Journal of Theoretical Biology, 2003, 225, 205-214.	0.8	9
33	Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8124-8129.	3.3	493
34	Drainage basins and channel incision on Mars. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1780-1783.	3.3	96
35	Atmospheric carbon dioxide levels for the last 500 million years. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4167-4171.	3.3	111
36	Scaling, Universality, and Geomorphology. Annual Review of Earth and Planetary Sciences, 2000, 28, 571-610.	4.6	252

#	Article	IF	CITATIONS
37	Unified view of scaling laws for river networks. Physical Review E, 1999, 59, 4865-4877.	0.8	104
38	Critical behavior in flow through a rough-walled channel. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 255, 31-36.	0.9	19
39	Scaling of a Slope: The Erosion of Tilted Landscapes. Journal of Statistical Physics, 1998, 93, 477-500.	0.5	25
40	Oscillons, spiral waves, and stripes in a model of vibrated sand. Physical Review E, 1998, 57, R1239-R1242.	0.8	40
41	Stochastic Equation for the Erosion of Inclined Topography. Physical Review Letters, 1998, 80, 4349-4352.	2.9	28
42	Transport properties and diagenesis in sedimentary rocks: The role of micro-scale geometry. Geology, 1997, 25, 547.	2.0	18
43	Two-fluid flow in sedimentary rock: simulation, transport and complexity. Journal of Fluid Mechanics, 1997, 341, 343-370.	1.4	51
44	An abiotic model for stromatolite morphogenesis. Nature, 1996, 383, 423-425.	13.7	385
45	Fluctuating hydrodynamic interfaces: Theory and simulation. Physical Review E, 1996, 53, 1622-1643.	0.8	26
46	MACROSCOPIC MANIFESTATIONS OF MICROSCOPIC FLOWS THROUGH POROUS MEDIA: Phenomenology from Simulation. Annual Review of Earth and Planetary Sciences, 1996, 24, 63-87.	4.6	46
47	Simulating three-dimensional hydrodynamics on a cellular automata machine. Journal of Statistical Physics, 1995, 81, 105-128.	0.5	20
48	Phase separation in a three-dimensional, two-phase, hydrodynamic lattice gas. Journal of Statistical Physics, 1995, 81, 181-197.	0.5	31
49	Three-dimensional immiscible lattice gas: Application to sheared phase separation. Journal of Statistical Physics, 1995, 81, 199-222.	0.5	24
50	Fluctuating Fluid Interfaces. Physical Review Letters, 1995, 75, 260-263.	2.9	36
51	Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow. Reviews of Modern Physics, 1994, 66, 1417-1479.	16.4	272
52	Surface tension and interface fluctuations in immiscible lattice gases. Journal De Physique, I, 1994, 4, 29-46.	1.2	21
53	Nonâ€Newtonian flow (through porous media): A latticeâ€Boltzmann method. Geophysical Research Letters, 1993, 20, 679-682.	1.5	125
54	Lattice-gas and lattice-Boltzmann models of miscible fluids. Journal of Statistical Physics, 1992, 68, 409-429.	0.5	39

#	Article	IF	CITATIONS
55	Lattice Boltzmann model of immiscible fluids. Physical Review A, 1991, 43, 4320-4327.	1.0	1,293
56	A lattice-gas model for three immiscible fluids. Physica D: Nonlinear Phenomena, 1991, 47, 47-52.	1.3	32
57	A liquid-gas model on a lattice. Physica D: Nonlinear Phenomena, 1991, 47, 85-96.	1.3	30
58	A Galilean-invariant immiscible lattice gas. Physica D: Nonlinear Phenomena, 1991, 47, 53-63.	1.3	36
59	Deformation, growth, and order in sheared spinodal decomposition. Physical Review Letters, 1990, 65, 3305-3308.	2.9	34
60	The permeability of a random medium: Comparison of simulation with theory. Physics of Fluids A, Fluid Dynamics, 1990, 2, 2085-2088.	1.6	168
61	Negative-viscosity lattice gases. Journal of Statistical Physics, 1989, 56, 517-524.	0.5	21
62	Immiscible cellular-automaton fluids. Journal of Statistical Physics, 1988, 52, 1119-1127.	0.5	554
63	Cellularâ€automaton fluids: A model for flow in porous media. Geophysics, 1988, 53, 509-518.	1.4	273
64	Modeling seismic <i>P</i> â€Waves with cellular automata. Geophysical Research Letters, 1987, 14, 17-20.	1.5	30
65	Automatic estimation of large residual statics corrections. Geophysics, 1986, 51, 332-346.	1.4	248
66	Residual migration: Applications and limitations. Geophysics, 1985, 50, 110-126.	1.4	75
67	Nonlinear inversion, statistical mechanics, and residual statics estimation. Geophysics, 1985, 50, 2784-2796.	1.4	248