Nabeel Bardeesy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580340/publications.pdf

Version: 2024-02-01

98 papers 20,612 citations

51 h-index 97 g-index

103 all docs

103 docs citations

103 times ranked

31771 citing authors

#	Article	IF	CITATIONS
1	Placental growth factor promotes tumour desmoplasia and treatment resistance in intrahepatic cholangiocarcinoma. Gut, 2022, 71, 185-193.	6.1	34
2	Mutant IDH Inhibits IFNγ–TET2 Signaling to Promote Immunoevasion and Tumor Maintenance in Cholangiocarcinoma. Cancer Discovery, 2022, 12, 812-835.	7.7	55
3	Activity of KIN-3248, a next-generation pan-FGFR inhibitor, against acquired FGFR-gatekeeper and molecular-brake drug resistance mutations Journal of Clinical Oncology, 2022, 40, 461-461.	0.8	3
4	Biology of IDH mutant cholangiocarcinoma. Hepatology, 2022, 75, 1322-1337.	3.6	20
5	EGFR Inhibition Potentiates FGFR Inhibitor Therapy and Overcomes Resistance in FGFR2 Fusion–Positive Cholangiocarcinoma. Cancer Discovery, 2022, 12, 1378-1395.	7.7	33
6	Oncogenic Kras-Mediated Cytokine CCL15 Regulates Pancreatic Cancer Cell Migration and Invasion through ROS. Cancers, 2022, 14, 2153.	1.7	5
7	ISL2 is a putative tumor suppressor whose epigenetic silencing reprograms the metabolism of pancreatic cancer. Developmental Cell, 2022, 57, 1331-1346.e9.	3.1	9
8	Nuclear GSK- $3\hat{l}^2$ and Oncogenic KRas Lead to the Retention of Pancreatic Ductal Progenitor Cells Phenotypically Similar to Those Seen in IPMN. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	4
9	Multiomic analysis of microRNA-mediated regulation reveals a proliferative axis involving miR-10b in fibrolamellar carcinoma. JCI Insight, 2022, 7, .	2.3	9
10	<i>FGFR2</i> Extracellular Domain In-Frame Deletions Are Therapeutically Targetable Genomic Alterations That Function as Oncogenic Drivers in Cholangiocarcinoma. Cancer Discovery, 2021, 11, 2488-2505.	7.7	46
11	Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer. Nature Nanotechnology, 2021, 16, 830-839.	15.6	55
12	ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1-mutant lung cancer. Nature Cancer, 2021, 2, 503-514.	5.7	72
13	Molecular and morphological changes induced by ivosidenib correlate with efficacy in mutant- <i>IDH1</i> cholangiocarcinoma. Future Oncology, 2021, 17, 2057-2074.	1.1	14
14	Discovery of a Potent Degrader for Fibroblast Growth Factor Receptor 1/2. Angewandte Chemie - International Edition, 2021, 60, 15905-15911.	7.2	25
15	Discovery of a Potent Degrader for Fibroblast Growth Factor Receptor 1/2. Angewandte Chemie, 2021, 133, 16041-16047.	1.6	5
16	Loss of Smad4 promotes aggressive lung cancer metastasis by de-repression of PAK3 via miRNA regulation. Nature Communications, 2021, 12, 4853.	5.8	27
17	A human liver cell-based system modeling a clinical prognostic liver signature for therapeutic discovery. Nature Communications, 2021, 12, 5525.	5.8	21
18	Dual Programmed Death Receptorâ€1 and Vascular Endothelial Growth Factor Receptorâ€2 Blockade Promotes Vascular Normalization and Enhances Antitumor Immune Responses in Hepatocellular Carcinoma. Hepatology, 2020, 71, 1247-1261.	3.6	247

#	Article	IF	Citations
19	Fibrotic Response to Neoadjuvant Therapy Predicts Survival in Pancreatic Cancer and Is Measurable with Collagen-Targeted Molecular MRI. Clinical Cancer Research, 2020, 26, 5007-5018.	3.2	29
20	REDD1 loss reprograms lipid metabolism to drive progression of <i>RAS</i> mutant tumors. Genes and Development, 2020, 34, 751-766.	2.7	30
21	Therapeutic targeting of extracellular FGFR2 activating deletions in intrahepatic cholangiocarcinoma Journal of Clinical Oncology, 2020, 38, 567-567.	0.8	1
22	Remembering Dr. Supriya "Shoop" Saha. Oncologist, 2020, 25, 905-906.	1.9	0
23	EGFR Pathway Links Amino Acid Levels and Induction of Macropinocytosis. Developmental Cell, 2019, 50, 261-263.	3.1	7
24	LKB1 specifies neural crest cell fates through pyruvate-alanine cycling. Science Advances, 2019, 5, eaau5106.	4.7	12
25	Quasimesenchymal phenotype predicts systemic metastasis in pancreatic ductal adenocarcinoma. Modern Pathology, 2019, 32, 844-854.	2.9	4
26	TAS-120 Overcomes Resistance to ATP-Competitive FGFR Inhibitors in Patients with FGFR2 Fusion–Positive Intrahepatic Cholangiocarcinoma. Cancer Discovery, 2019, 9, 1064-1079.	7.7	254
27	HCV-Induced Epigenetic Changes Associated With Liver Cancer Risk Persist After Sustained Virologic Response. Gastroenterology, 2019, 156, 2313-2329.e7.	0.6	184
28	<p>Road map for fibrolamellar carcinoma: progress and goals of a diversified approach</p> . Journal of Hepatocellular Carcinoma, 2019, Volume 6, 41-48.	1.8	5
29	AMPK-Mediated Lysosome Biogenesis in Lung Cancer Growth. Cell Metabolism, 2019, 29, 238-240.	7.2	16
30	No Cell Left Unturned: Intraductal Papillary Mucinous Neoplasm Heterogeneity. Clinical Cancer Research, 2019, 25, 2027-2029.	3.2	7
31	Circumventing senescence is associated with stem cell properties and metformin sensitivity. Aging Cell, 2019, 18, e12889.	3.0	35
32	Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer. ELife, $2019, 8, .$	2.8	66
33	Frequency and feasibility of detecting FGFR mRNA expression in archival samples of patients with cholangiocarcinoma (CCA) Journal of Clinical Oncology, 2019, 37, 281-281.	0.8	0
34	Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism. Nature Cell Biology, 2018, 20, 811-822.	4.6	124
35	<i>Kras</i> and <i>Tp53</i> Mutations Cause Cholangiocyte- and Hepatocyte-Derived Cholangiocarcinoma. Cancer Research, 2018, 78, 4445-4451.	0.4	79
36	A Cell Size Theory of Aging. Developmental Cell, 2018, 45, 665-666.	3.1	3

3

#	Article	IF	CITATIONS
37	Orthotopic and heterotopic murine models of pancreatic cancer and their different responses to FOLFIRINOX chemotherapy. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	60
38	Altered exocrine function can drive adipose wasting in early pancreatic cancer. Nature, 2018, 558, 600-604.	13.7	114
39	The Presence of Interleukin-13 at Pancreatic ADM/PanIN Lesions Alters Macrophage Populations and Mediates Pancreatic Tumorigenesis. Cell Reports, 2017, 19, 1322-1333.	2.9	87
40	Diversity of Precursor Lesions For Pancreatic Cancer: The Genetics and Biology of Intraductal Papillary Mucinous Neoplasm. Clinical and Translational Gastroenterology, 2017, 8, e86.	1.3	89
41	Lkb1 inactivation drives lung cancer lineage switching governed by Polycomb Repressive Complex 2. Nature Communications, 2017, 8, 14922.	5.8	80
42	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Reports, 2017, 18, 2780-2794.	2.9	416
43	Polyclonal Secondary <i>FGFR2</i> Mutations Drive Acquired Resistance to FGFR Inhibition in Patients with FGFR2 Fusion–Positive Cholangiocarcinoma. Cancer Discovery, 2017, 7, 252-263.	7.7	384
44	Reprogramming Enhancers to Drive Metastasis. Cell, 2017, 170, 823-825.	13.5	10
45	Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2017, 32, 185-203.e13.	7.7	1,428
46	Tumor engraftment in patient-derived xenografts of pancreatic ductal adenocarcinoma is associated with adverse clinicopathological features and poor survival. PLoS ONE, 2017, 12, e0182855.	1.1	51
47	STK38L kinase ablation promotes loss of cell viability in a subset of KRAS-dependent pancreatic cancer cell lines. Oncotarget, 2017, 8, 78556-78572.	0.8	8
48	Isocitrate Dehydrogenase Mutations Confer Dasatinib Hypersensitivity and SRC Dependence in Intrahepatic Cholangiocarcinoma. Cancer Discovery, 2016, 6, 727-739.	7.7	126
49	TGF-Î ² Tumor Suppression through a Lethal EMT. Cell, 2016, 164, 1015-1030.	13.5	488
50	Intra-pancreatic Distal Bile Duct Carcinoma is Morphologically, Genetically, and Clinically Distinct from Pancreatic Ductal Adenocarcinoma. Journal of Gastrointestinal Surgery, 2016, 20, 953-959.	0.9	12
51	SIRT6 Suppresses Pancreatic Cancer through Control of Lin28b. Cell, 2016, 165, 1401-1415.	13.5	227
52	NRF2: Translating the Redox Code. Trends in Molecular Medicine, 2016, 22, 829-831.	3.5	6
53	mTORC2 Signaling Drives the Development and Progression of Pancreatic Cancer. Cancer Research, 2016, 76, 6911-6923.	0.4	63
54	LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature, 2016, 539, 390-395.	13.7	248

#	Article	IF	CITATIONS
55	Molecular Pathogenesis and Targeted Therapies for Intrahepatic Cholangiocarcinoma. Clinical Cancer Research, 2016, 22, 291-300.	3.2	185
56	PD-L1 and HLA Class I Antigen Expression and Clinical Course of the Disease in Intrahepatic Cholangiocarcinoma. Clinical Cancer Research, 2016, 22, 470-478.	3.2	168
57	YAP Inhibition Restores Hepatocyte Differentiation in Advanced HCC, Leading to Tumor Regression. Cell Reports, 2015, 10, 1692-1707.	2.9	213
58	Enhancing Hematopoietic Stem Cell Transplantation Efficacy by Mitigating Oxygen Shock. Cell, 2015, 161, 1553-1565.	13.5	273
59	Biliary Tract Cancers: Finding Better Ways to Lump and Split. Journal of Clinical Oncology, 2015, 33, 2588-2590.	0.8	14
60	Loss of Liver Kinase B1 (LKB1) in Beta Cells Enhances Glucose-stimulated Insulin Secretion Despite Profound Mitochondrial Defects. Journal of Biological Chemistry, 2015, 290, 20934-20946.	1.6	36
61	mTORC1 Activation Blocks BrafV600E-Induced Growth Arrest but Is Insufficient for Melanoma Formation. Cancer Cell, 2015, 27, 41-56.	7.7	106
62	Combined MEK and PI3K Inhibition in a Mouse Model of Pancreatic Cancer. Clinical Cancer Research, 2015, 21, 396-404.	3.2	121
63	Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature, 2015, 524, 361-365.	13.7	624
64	Bmi1 is required for the initiation of pancreatic cancer through an Ink4a-independent mechanism. Carcinogenesis, 2015, 36, 730-738.	1.3	29
65	Gene signatures from pancreatic cancer tumor and stromal cells predict disease outcome. Nature Genetics, 2015, 47, 1102-1103.	9.4	4
66	Pancreatic Cancer Metabolism: Breaking It Down to Build It Back Up. Cancer Discovery, 2015, 5, 1247-1261.	7.7	178
67	Prognosis and Clinicopathologic Features of Patients With Advanced Stage Isocitrate Dehydrogenase (IDH) Mutant and IDH Wild-Type Intrahepatic Cholangiocarcinoma. Oncologist, 2015, 20, 1019-1027.	1.9	112
68	Proteomic analysis of pRb loss highlights a signature of decreased mitochondrial oxidative phosphorylation. Genes and Development, 2015, 29, 1875-1889.	2.7	76
69	Role of the SIK2–p35–PJA2 complex in pancreatic β-cell functional compensation. Nature Cell Biology, 2014, 16, 234-244.	4.6	71
70	Energy Stress Regulates Hippo-YAP Signaling Involving AMPK-Mediated Regulation of Angiomotin-like 1 Protein. Cell Reports, 2014, 9, 495-503.	2.9	244
71	Cellular senescence and protein degradation. Cell Cycle, 2014, 13, 1840-1858.	1.3	54
72	IDH mutations in liver cell plasticity and biliary cancer. Cell Cycle, 2014, 13, 3176-3182.	1.3	30

#	Article	IF	CITATIONS
73	Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology, 2014, 59, 1577-1590.	3.6	290
74	Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. Journal of Hepatology, 2014, 61, S79-S90.	1.8	181
75	Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3091-100.	3.3	421
76	Single-Cell RNA Sequencing Identifies Extracellular Matrix Gene Expression by Pancreatic Circulating Tumor Cells. Cell Reports, 2014, 8, 1905-1918.	2.9	449
77	Pancreatic Adenocarcinoma. New England Journal of Medicine, 2014, 371, 1039-1049.	13.9	1,821
78	CDK4/6 and IGF1 Receptor Inhibitors Synergize to Suppress the Growth of p16INK4A-Deficient Pancreatic Cancers. Cancer Research, 2014, 74, 3947-3958.	0.4	107
79	Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer. Nature, 2014, 513, 110-114.	13.7	367
80	DCLK1 Marks a Morphologically Distinct Subpopulation of Cells With Stem Cell Properties in Preinvasive Pancreatic Cancer. Gastroenterology, 2014, 146, 245-256.	0.6	277
81	Effect of molecular genotyping to predict outcomes in patients with metastatic pancreatic cancer Journal of Clinical Oncology, 2014, 32, 4128-4128.	0.8	3
82	Variability in immune infiltrates and HLA expression in cholangiocarcinoma Journal of Clinical Oncology, 2014, 32, 230-230.	0.8	2
83	Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 2013, 496, 101-105.	13.7	1,562
84	The LKB1 Tumor Suppressor as a Biomarker in Mouse and Human Tissues. PLoS ONE, 2013, 8, e73449.	1.1	14
85	<i>KrasG12D</i> and <i>p53</i> Mutation Cause Primary Intrahepatic Cholangiocarcinoma. Cancer Research, 2012, 72, 1557-1567.	0.4	405
86	<scp>LKB</scp> 1 suppresses melanoma metastasis: the answer is <scp>YES</scp> . Pigment Cell and Melanoma Research, 2012, 25, 716-718.	1.5	0
87	The WTX Tumor Suppressor Regulates Mesenchymal Progenitor Cell Fate Specification. Developmental Cell, 2011, 20, 583-596.	3.1	44
88	Integrative Genomic and Proteomic Analyses Identify Targets for Lkb1-Deficient Metastatic Lung Tumors. Cancer Cell, 2010, 17, 547-559.	7.7	215
89	The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature, 2010, 468, 659-663.	13.7	346
90	Mst1 and Mst2 Maintain Hepatocyte Quiescence andÂSuppress Hepatocellular Carcinoma Development through Inactivation of the Yap1 Oncogene. Cancer Cell, 2009, 16, 425-438.	7.7	809

#	Article	IF	CITATIONS
91	LKB1 modulates lung cancer differentiation and metastasis. Nature, 2007, 448, 807-810.	13.7	907
92	Both p16Ink4a and the p19Arf-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5947-5952.	3.3	537
93	Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes and Development, 2006, 20, 3130-3146.	2.7	562
94	RAS unplugged: Negative feedback and oncogene-induced senescence. Cancer Cell, 2006, 10, 451-453.	7.7	28
95	The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 2004, 6, 91-99.	7.7	956
96	Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes and Development, 2003, 17, 3112-3126.	2.7	912
97	Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature, 2002, 419, 162-167.	13.7	390
98	Pancreatic cancer biology and genetics. Nature Reviews Cancer, 2002, 2, 897-909.	12.8	1,029