List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580326/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The dust-continuum size of TNG50 galaxies at <i>z</i> Â= 1–5: a comparison with the distribution of stellar light, stars, dust, and H2. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3321-3334.                          | 1.6 | 37        |
| 2  | High-redshift predictions from IllustrisTNG – III. Infrared luminosity functions, obscured star<br>formation, and dust temperature of high-redshift galaxies. Monthly Notices of the Royal<br>Astronomical Society, 2022, 510, 5560-5578. | 1.6 | 26        |
| 3  | Galactic angular momentum in the IllustrisTNG simulation – I. Connection to morphology, halo spin,<br>and black hole mass. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5978-5994.                                       | 1.6 | 21        |
| 4  | High and low Sérsic index bulges in Milky Way- and M31-like galaxies: origin and connection to the bar<br>with TNG50. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2537-2555.                                            | 1.6 | 9         |
| 5  | H <i>α</i> emission in local galaxies: star formation, time variability, and the diffuse ionized gas.<br>Monthly Notices of the Royal Astronomical Society, 2022, 513, 2904-2929.                                                         | 1.6 | 29        |
| 6  | Percent-level constraints on baryonic feedback with spectral distortion measurements. Physical Review D, 2022, 105, .                                                                                                                     | 1.6 | 6         |
| 7  | Degeneracies between self-interacting dark matter and supernova feedback as cusp-core<br>transformation mechanisms. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3458-3481.                                              | 1.6 | 18        |
| 8  | Formation and evolution of young massive clusters in galaxy mergers: the <tt>SMUGGLE</tt> view.<br>Monthly Notices of the Royal Astronomical Society, 2022, 514, 265-279.                                                                 | 1.6 | 26        |
| 9  | The effects of AGN feedback on the structural and dynamical properties of Milky Way-mass galaxies in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3768-3787.                                   | 1.6 | 14        |
| 10 | The chemo-dynamical groups of Galactic globular clusters. Monthly Notices of the Royal<br>Astronomical Society, 2022, 513, 4107-4129.                                                                                                     | 1.6 | 28        |
| 11 | Linking the brightest stellar streams with the accretion history of Milky Way like galaxies. Monthly<br>Notices of the Royal Astronomical Society, 2022, 514, 4898-4911.                                                                  | 1.6 | 6         |
| 12 | On the formation of massive quiescent galaxies with diverse morphologies in the TNG50 simulation.<br>Monthly Notices of the Royal Astronomical Society, 2022, 515, 213-228.                                                               | 1.6 | 16        |
| 13 | The Supersonic Project: To Cool or Not to Cool Supersonically Induced Gas Objects (SIGOs)?.<br>Astrophysical Journal, 2021, 906, 25.                                                                                                      | 1.6 | 10        |
| 14 | The TNG50 Simulation: Highly-Resolved Galaxies in a Large Cosmological Volume to the Present Day. ,<br>2021, , 5-22.                                                                                                                      |     | 0         |
| 15 | Dust entrainment in galactic winds. Monthly Notices of the Royal Astronomical Society, 2021, 503, 336-343.                                                                                                                                | 1.6 | 9         |
| 16 | A Tidally Induced Global Corrugation Pattern in an External Disk Galaxy Similar to the Milky Way.<br>Astrophysical Journal, 2021, 908, 27.                                                                                                | 1.6 | 13        |
| 17 | Observing the Stellar Halo of Andromeda in Cosmological Simulations: The AURIGA2PANDAS Pipeline.<br>Astrophysical Journal, 2021, 910, 92.                                                                                                 | 1.6 | 6         |
| 18 | Velocity-dependent J-factors for annihilation radiation from cosmological simulations. Journal of<br>Cosmology and Astroparticle Physics, 2021, 2021, 070.                                                                                | 1.9 | 12        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Properties of the ionized CGM and IGM: tests for galaxy formation models from the<br>Sunyaev–Zel'dovich effect. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5131-5143.                                    | 1.6 | 20        |
| 20 | Morphological Types of DM Halos in Milky Way-like Galaxies in the TNG50 Simulation: Simple, Twisted, or Stretched. Astrophysical Journal, 2021, 913, 36.                                                                    | 1.6 | 15        |
| 21 | Revisiting the tension between fast bars and the Ĵ›CDM paradigm. Astronomy and Astrophysics, 2021, 650, L16.                                                                                                                | 2.1 | 38        |
| 22 | Gas-phase metallicity gradients of TNG50 star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3024-3048.                                                                                    | 1.6 | 40        |
| 23 | The physical origins and dominant emission mechanisms of Lyman alpha haloes: results from the TNG50 simulation in comparison to MUSE observations. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5129-5152. | 1.6 | 38        |
| 24 | Quenched fractions in the IllustrisTNG simulations: comparison with observations and other theoretical models. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4760-4780.                                     | 1.6 | 66        |
| 25 | Inferring the Morphology of Stellar Distribution in TNG50: Twisted and Twisted-stretched Shapes.<br>Astrophysical Journal, 2021, 918, 7.                                                                                    | 1.6 | 9         |
| 26 | Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 219-235.                                          | 1.6 | 56        |
| 27 | The abundance of satellites around Milky Way- and M31-like galaxies with the TNG50 simulation: a matter of diversity. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4211-4240.                              | 1.6 | 41        |
| 28 | Satellites around Milky Way Analogs: Tension in the Number and Fraction of Quiescent Satellites Seen in Observations versus Simulations. Astrophysical Journal Letters, 2021, 916, L19.                                     | 3.0 | 19        |
| 29 | Determining the full satellite population of a Milky Way-mass halo in a highly resolved cosmological hydrodynamic simulation. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4953-4967.                      | 1.6 | 42        |
| 30 | The cumulative star formation histories of dwarf galaxies with TNG50. I: environment-driven diversity and connection to quenching. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1652-1674.                 | 1.6 | 32        |
| 31 | Quiescent ultra-diffuse galaxies in the field originating from backsplash orbits. Nature Astronomy, 2021, 5, 1255-1260.                                                                                                     | 4.2 | 32        |
| 32 | The effect of magnetic fields on properties of the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4888-4902.                                                                          | 1.6 | 62        |
| 33 | Molecular hydrogen in IllustrisTNG galaxies: carefully comparing signatures of environment with<br>local CO and SFR data. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3158-3178.                          | 1.6 | 25        |
| 34 | An off-centred bulge or a satellite? Hydrodynamical <i>N</i> -body simulations of the disc galaxy<br>NGCÂ5474. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2091-2111.                                     | 1.6 | 6         |
| 35 | Dancing in the void: hydrodynamical <i>N</i> -body simulations of the extremely metal-poor galaxy<br>DDOÂ68. Monthly Notices of the Royal Astronomical Society, 2021, 509, 2940-2956.                                       | 1.6 | 4         |
| 36 | The Supersonic Project: SIGOs, A Proposed Progenitor to Globular Clusters, and Their Connections to<br>Gravitational-wave Anisotropies. Astrophysical Journal, 2021, 922, 86.                                               | 1.6 | 9         |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The large-scale distribution of ionized metals in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2021, 510, 399-412.                                                                              | 1.6  | 6         |
| 38 | A Comparison of Circumgalactic Mg ii Absorption between the TNG50 Simulation and the MEGAFLOW Survey. Astrophysical Journal, 2021, 923, 56.                                                                         | 1.6  | 12        |
| 39 | Cosmological simulations of galaxy formation. Nature Reviews Physics, 2020, 2, 42-66.                                                                                                                               | 11.9 | 317       |
| 40 | Resolving small-scale cold circumgalactic gas in TNG50. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2391-2414.                                                                                    | 1.6  | 100       |
| 41 | Neutron star mergers and rare core-collapse supernovae as sources of r-process enrichment in simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4867-4883.                           | 1.6  | 51        |
| 42 | Predictions for the angular dependence of gas mass flow rate and metallicity in the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2462-2473.                                 | 1.6  | 58        |
| 43 | The fate of disc galaxies in IllustrisTNG clusters. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2673-2703.                                                                                        | 1.6  | 53        |
| 44 | Magnetizing the circumgalactic medium of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3125-3137.                                                                                    | 1.6  | 40        |
| 45 | The dark matter component of the Gaia radially anisotropic substructure. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 036-036.                                                                       | 1.9  | 22        |
| 46 | A redshift-dependent IRX–β dust attenuation relation for TNG50 galaxies. Monthly Notices of the Royal<br>Astronomical Society, 2020, 497, 4773-4794.                                                                | 1.6  | 21        |
| 47 | The dual origin of the Galactic thick disc and halo from the gas-rich Gaia–Enceladus Sausage merger.<br>Monthly Notices of the Royal Astronomical Society, 2020, 497, 1603-1618.                                    | 1.6  | 71        |
| 48 | A tale of two populations: surviving and destroyed dwarf galaxies and the build-up of the MilkyÂWay's<br>stellar halo. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4459-4471.                     | 1.6  | 40        |
| 49 | Ejective and preventative: the IllustrisTNG black hole feedback and its effects on the thermodynamics of the gas within and around galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 768-792. | 1.6  | 100       |
| 50 | The orbital phase space of contracted dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2020, 495, 12-28.                                                                                      | 1.6  | 17        |
| 51 | High-redshift <i>JWST</i> predictions from IllustrisTNG: II. Galaxy line and continuum spectral indices and dust attenuation curves. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4747-4768.       | 1.6  | 31        |
| 52 | Galaxy formation with BECDM – II. Cosmic filaments and first galaxies. Monthly Notices of the Royal<br>Astronomical Society, 2020, 494, 2027-2044.                                                                  | 1.6  | 58        |
| 53 | Early-type galaxy density profiles from IllustrisTNG – I. Galaxy correlations and the impact of baryons.<br>Monthly Notices of the Royal Astronomical Society, 2020, 491, 5188-5215.                                | 1.6  | 26        |
| 54 | Chemodynamics of barred galaxies in cosmological simulations: On the Milky Way's quiescent merger<br>history and <i>in-situ</i> bulge. Monthly Notices of the Royal Astronomical Society, 2020, 494,<br>5936-5960.  | 1.6  | 72        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A missing outskirts problem? Comparisons between stellar haloes in the Dragonfly Nearby Galaxies<br>Survey and the TNG100 simulation. Monthly Notices of the Royal Astronomical Society, 2020, 495,<br>4570-4604.                 | 1.6  | 31        |
| 56 | The globular cluster system of the Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2020, 496, 638-648.                                                                                                     | 1.6  | 11        |
| 57 | Radiative AGN feedback on a moving mesh: the impact of the galactic disc and dust physics on outflow properties. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1143-1164.                                         | 1.6  | 10        |
| 58 | Subhalo destruction in the Apostle and Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5780-5793.                                                                                               | 1.6  | 46        |
| 59 | High-redshift <i>JWST</i> predictions from IllustrisTNG: dust modelling and galaxy luminosity functions. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5167-5201.                                                 | 1.6  | 99        |
| 60 | Baryons in the Cosmic Web of IllustrisTNG – II. The connection among galaxies, haloes, their<br>formation time, and their location in the Cosmic Web. Monthly Notices of the Royal Astronomical<br>Society, 2020, 491, 5747-5758. | 1.6  | 27        |
| 61 | Galaxy interactions in IllustrisTNG-100, I: The power and limitations of visual identification. Monthly<br>Notices of the Royal Astronomical Society, 2020, 492, 2075-2094.                                                       | 1.6  | 25        |
| 62 | Efficacy of early stellar feedback in low gas surface density environments. Monthly Notices of the<br>Royal Astronomical Society, 2020, 491, 2088-2103.                                                                           | 1.6  | 28        |
| 63 | Quenched fractions in the IllustrisTNG simulations: the roles of AGN feedback, environment, and pre-processing. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4004-4024.                                          | 1.6  | 86        |
| 64 | The effects of subgrid models on the properties of giant molecular clouds in galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5862-5872.                                               | 1.6  | 20        |
| 65 | Simulating the interstellar medium of galaxies with radiative transfer, non-equilibrium thermochemistry, and dust. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5732-5748.                                       | 1.6  | 27        |
| 66 | The distinct stellar-to-halo mass relations of satellite and central galaxies: insights from the<br>IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3957-3975.                            | 1.6  | 32        |
| 67 | Structural and photometric properties of barred galaxies from the Auriga cosmological simulations.<br>Monthly Notices of the Royal Astronomical Society, 2020, 491, 1800-1819.                                                    | 1.6  | 20        |
| 68 | The IllustrisTNG simulations: public data release. Computational Astrophysics and Cosmology, 2019, 6,                                                                                                                             | 22.7 | 698       |
| 69 | Simulating the effect of photoheating feedback during reionization. Monthly Notices of the Royal Astronomical Society, 2019, 488, 419-437.                                                                                        | 1.6  | 23        |
| 70 | Dust in and around galaxies: dust in cluster environments and its impact on gas cooling. Monthly<br>Notices of the Royal Astronomical Society, 2019, 487, 4870-4883.                                                              | 1.6  | 38        |
| 71 | Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5416-5440.                                                                      | 1.6  | 109       |
| 72 | The effects of dynamical substructure on Milky Way mass estimates from the high-velocity tail of the local stellar halo. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 487, L72-L76.                          | 1.2  | 34        |

FEDERICO MARINACCI

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3196-3233.                                                        | 1.6 | 453       |
| 74 | Simulating the interstellar medium and stellar feedback on a moving mesh: implementation and isolated galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4233-4260.                                                | 1.6 | 72        |
| 75 | Origin of the galaxy H iÂsize–mass relation. Monthly Notices of the Royal Astronomical Society, 2019,<br>490, 96-113.                                                                                                                   | 1.6 | 31        |
| 76 | Revealing the galaxy–halo connection in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5693-5711.                                                                                                          | 1.6 | 59        |
| 77 | Imprints of temperature fluctuations on the z $\hat{a}^{1/4}$ 5 Lyman- $\hat{l}^{\pm}$ forest: a view from radiation-hydrodynamic simulations of reionization. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3177-3195. | 1.6 | 33        |
| 78 | Gas accretion and galactic fountain flows in the Auriga cosmological simulations: angular<br>momentum and metal redistribution. Monthly Notices of the Royal Astronomical Society, 2019, 490,<br>4786-4803.                             | 1.6 | 69        |
| 79 | Simulating cosmological substructure in the solar neighbourhood. Monthly Notices of the Royal<br>Astronomical Society: Letters, 2019, 490, L32-L37.                                                                                     | 1.2 | 14        |
| 80 | Early-type galaxy density profiles from IllustrisTNG – II. Evolutionary trend of the total density profile. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5722-5738.                                                    | 1.6 | 19        |
| 81 | First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3234-3261.                                                       | 1.6 | 510       |
| 82 | First Star-Forming Structures in Fuzzy Cosmic Filaments. Physical Review Letters, 2019, 123, 141301.                                                                                                                                    | 2.9 | 94        |
| 83 | The Supersonic Project: Shining Light on SIGOs—A New Formation Channel for Globular Clusters.<br>Astrophysical Journal Letters, 2019, 878, L23.                                                                                         | 3.0 | 24        |
| 84 | The prevalence of pseudo-bulges in the Auriga simulations. Monthly Notices of the Royal<br>Astronomical Society, 2019, 489, 5742-5763.                                                                                                  | 1.6 | 40        |
| 85 | On the correlation between the local dark matter and stellar velocities. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 045-045.                                                                                           | 1.9 | 12        |
| 86 | A study of stellar orbit fractions: simulated IllustrisTNG galaxies compared to CALIFA observations.<br>Monthly Notices of the Royal Astronomical Society, 2019, 489, 842-854.                                                          | 1.6 | 19        |
| 87 | Enhancing AGN efficiency and cool-core formation with anisotropic thermal conduction. Monthly<br>Notices of the Royal Astronomical Society, 2019, 488, 3003-3013.                                                                       | 1.6 | 22        |
| 88 | A Quantification of the Butterfly Effect in Cosmological Simulations and Implications for Galaxy<br>Scaling Relations. Astrophysical Journal, 2019, 871, 21.                                                                            | 1.6 | 65        |
| 89 | No cores in dark matter-dominated dwarf galaxies with bursty star formation histories. Monthly<br>Notices of the Royal Astronomical Society, 2019, 486, 4790-4804.                                                                      | 1.6 | 62        |
| 90 | The TNG50 Simulation of the IllustrisTNG Project: Bridging the Gap Between Large Cosmological Volumes and Resolved Galaxies. , 2019, , 5-20.                                                                                            |     | 0         |

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Atomic and molecular gas in IllustrisTNG galaxies at low redshift. Monthly Notices of the Royal<br>Astronomical Society, 2019, 487, 1529-1550.                                                                                                  | 1.6 | 67        |
| 92  | Disruption of giant molecular clouds and formation of bound star clusters under the influence of momentum stellar feedback. Monthly Notices of the Royal Astronomical Society, 2019, 487, 364-380.                                              | 1.6 | 62        |
| 93  | A Deep Learning Approach to Galaxy Cluster X-Ray Masses. Astrophysical Journal, 2019, 876, 82.                                                                                                                                                  | 1.6 | 55        |
| 94  | The morphology and kinematics of the gaseous circumgalactic medium of Milky Way mass galaxies – II.<br>Comparison of IllustrisTNG and Illustris simulation results. Monthly Notices of the Royal<br>Astronomical Society, 2019, 486, 4686-4700. | 1.6 | 20        |
| 95  | Baryons in the Cosmic Web of IllustrisTNG – I: gas in knots, filaments, sheets, and voids. Monthly<br>Notices of the Royal Astronomical Society, 2019, 486, 3766-3787.                                                                          | 1.6 | 120       |
| 96  | The Auriga stellar haloes: connecting stellar population properties with accretion and merging history. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2589-2616.                                                                | 1.6 | 113       |
| 97  | The velocity anisotropy of the Milky Way satellite system. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2679-2694.                                                                                                             | 1.6 | 32        |
| 98  | The local high-velocity tail and the Galactic escape speed. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3514-3526.                                                                                                            | 1.6 | 75        |
| 99  | <scp>arepo-rt</scp> : radiation hydrodynamics on a moving mesh. Monthly Notices of the Royal<br>Astronomical Society, 2019, 485, 117-149.                                                                                                       | 1.6 | 69        |
| 100 | The mass of the Milky Way from satellite dynamics. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5453-5467.                                                                                                                     | 1.6 | 102       |
| 101 | The star formation activity of IllustrisTNG galaxies: main sequence, UVJ diagram, quenched fractions, and systematics. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4817-4840.                                                 | 1.6 | 176       |
| 102 | Atomic hydrogen in IllustrisTNG galaxies: the impact of environment parallelled with local 21-cm surveys. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5334-5354.                                                              | 1.6 | 75        |
| 103 | The interplay of self-interacting dark matter and baryons in shaping the halo evolution. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4563-4573.                                                                               | 1.6 | 35        |
| 104 | The origin of galactic metal-rich stellar halo components with highly eccentric orbits. Monthly<br>Notices of the Royal Astronomical Society, 2019, 484, 4471-4483.                                                                             | 1.6 | 89        |
| 105 | Ultra-diffuse galaxies in the Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5182-5195.                                                                                                                      | 1.6 | 55        |
| 106 | The optical morphologies of galaxies in the IllustrisTNG simulation: a comparison to Pan-STARRS observations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4140-4159.                                                          | 1.6 | 236       |
| 107 | The ALMA Spectroscopic Survey in the HUDF: the Molecular Gas Content of Galaxies and Tensions with<br>IllustrisTNG and the Santa Cruz SAM. Astrophysical Journal, 2019, 882, 137.                                                               | 1.6 | 65        |
| 108 | The multiplicity and anisotropy of galactic satellite accretion. Monthly Notices of the Royal<br>Astronomical Society, 2018, 476, 1796-1810.                                                                                                    | 1.6 | 51        |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The abundance, distribution, and physical nature of highly ionized oxygen O vi, O vii, and O viii in<br>IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2018, 477, 450-479.                 | 1.6 | 133       |
| 110 | First results from the IllustrisTNG simulations: the galaxy colour bimodality. Monthly Notices of the Royal Astronomical Society, 2018, 475, 624-647.                                                        | 1.6 | 894       |
| 111 | First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 475, 648-675.                         | 1.6 | 983       |
| 112 | First results from the IllustrisTNG simulations: matter and galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2018, 475, 676-698.                                                        | 1.6 | 1,035     |
| 113 | Simulating galaxy formation with the IllustrisTNG model. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4077-4106.                                                                            | 1.6 | 1,144     |
| 114 | The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the<br>IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2073-2093. | 1.6 | 71        |
| 115 | The size evolution of star-forming and quenched galaxies in the IllustrisTNG simulation. Monthly<br>Notices of the Royal Astronomical Society, 2018, 474, 3976-3996.                                         | 1.6 | 195       |
| 116 | First results from the IllustrisTNG simulations: a tale of two elements – chemical evolution of<br>magnesium and europium. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1206-1224.          | 1.6 | 746       |
| 117 | Non-ideal magnetohydrodynamics on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2476-2492.                                                                                    | 1.6 | 14        |
| 118 | The fraction of dark matter within galaxies from the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1950-1975.                                                      | 1.6 | 97        |
| 119 | The Supersonic Project: rotational effects of supersonic motions on the first structures in the Universe. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3108-3117.                           | 1.6 | 14        |
| 120 | Supermassive black holes and their feedback effects in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4056-4072.                                                 | 1.6 | 270       |
| 121 | A census of cool-core galaxy clusters in IllustrisTNG. Monthly Notices of the Royal Astronomical<br>Society, 2018, 481, 1809-1831.                                                                           | 1.6 | 68        |
| 122 | Quenching and ram pressure stripping of simulated Milky Way satellite galaxies. Monthly Notices of<br>the Royal Astronomical Society, 2018, 478, 548-567.                                                    | 1.6 | 135       |
| 123 | Faraday rotation maps of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4410-4418.                                                                                             | 1.6 | 44        |
| 124 | Ingredients for 21 cm Intensity Mapping. Astrophysical Journal, 2018, 866, 135.                                                                                                                              | 1.6 | 139       |
| 125 | Modeling the Atomic-to-molecular Transition in Cosmological Simulations of Galaxy Formation.<br>Astrophysical Journal, Supplement Series, 2018, 238, 33.                                                     | 3.0 | 71        |
| 126 | Aurigaia: mock Gaia DR2 stellar catalogues from the auriga cosmological simulations. Monthly<br>Notices of the Royal Astronomical Society, 2018, 481, 1726-1743.                                             | 1.6 | 44        |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Origin of chemically distinct discs in the Auriga cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3629-3639.                                            | 1.6 | 97        |
| 128 | Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477, L16-L20. | 1.2 | 75        |
| 129 | Chemical pre-processing of cluster galaxies over the past 10 billion years in the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477, L35-L39.     | 1.2 | 21        |
| 130 | Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L18-L22.                                        | 1.2 | 27        |
| 131 | On the relevance of chaos for halo stars in the solar neighbourhood II. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4052-4067.                                                | 1.6 | 15        |
| 132 | Simulating galactic dust grain evolution on a moving mesh. Monthly Notices of the Royal<br>Astronomical Society, 2018, 478, 2851-2886.                                                          | 1.6 | 87        |
| 133 | Baryonic impact on the dark matter orbital properties of Milky Way-sized haloes. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3876-3886.                                       | 1.6 | 21        |
| 134 | Simulating galaxy formation with black hole driven thermal and kinetic feedback. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3291-3308.                                       | 1.6 | 725       |
| 135 | Realistic estimation for the detectability of dark matter subhalos using Fermi-LAT catalogs. Physical<br>Review D, 2017, 96, .                                                                  | 1.6 | 26        |
| 136 | Magnetic field formation in the Milky Way like disc galaxies of the Auriga project. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3185-3199.                                    | 1.6 | 120       |
| 137 | Mapping substructure in the HST Frontier Fields cluster lenses and in cosmological simulations.<br>Monthly Notices of the Royal Astronomical Society, 2017, 468, 1962-1980.                     | 1.6 | 64        |
| 138 | Is There a Disk of Satellites around the Milky Way?. Astrophysical Journal, 2017, 843, 62.                                                                                                      | 1.6 | 7         |
| 139 | The survival of gas clouds in the circumgalactic medium of Milky Way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 470, 114-125.                                      | 1.6 | 110       |
| 140 | The slight spin of the old stellar halo. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1259-1273.                                                                               | 1.6 | 58        |
| 141 | Simulating the dust content of galaxies: successes and failures. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1505-1521.                                                       | 1.6 | 109       |
| 142 | Lessons from the Auriga discs: the hunt for the Milky Way's ex situ disc is not yet over. Monthly<br>Notices of the Royal Astronomical Society, 2017, 472, 3722-3733.                           | 1.6 | 46        |
| 143 | Warps and waves in the stellar discs of the Auriga cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3446-3460.                                           | 1.6 | 79        |
| 144 | Properties of H i discs in the Auriga cosmological simulations. Monthly Notices of the Royal<br>Astronomical Society, 2017, 466, 3859-3875.                                                     | 1.6 | 50        |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Baryonic impact on the dark matter distribution in Milky Way-sized galaxies and their satellites.<br>Monthly Notices of the Royal Astronomical Society, 2016, 458, 1559-1580.                      | 1.6 | 106       |
| 146 | On the stellar halo metallicity profile of Milky Way-like galaxies in the Auriga simulations. Monthly<br>Notices of the Royal Astronomical Society: Letters, 2016, 459, L46-L50.                   | 1.2 | 35        |
| 147 | THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS. Astrophysical Journal Letters, 2016, 827, L29.                                                                                  | 3.0 | 113       |
| 148 | Efficiency of gas cooling and accretion at the disc–corona interface. Monthly Notices of the Royal<br>Astronomical Society, 2016, 462, 4157-4170.                                                  | 1.6 | 87        |
| 149 | A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics. Monthly<br>Notices of the Royal Astronomical Society, 2016, 463, 477-488.                                         | 1.6 | 40        |
| 150 | Gas-rich and gas-poor structures through the stream velocity effect. Monthly Notices of the Royal<br>Astronomical Society, 2016, 460, 1625-1639.                                                   | 1.6 | 26        |
| 151 | Accurately simulating anisotropic thermal conduction on a moving mesh. Monthly Notices of the Royal Astronomical Society, 2016, 458, 410-424.                                                      | 1.6 | 30        |
| 152 | Galaxy formation with local photoionization feedback – II. Effect of X-ray emission from binaries and hot gas. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2516-2529.            | 1.6 | 14        |
| 153 | Vertical disc heating in Milky Way-sized galaxies in a cosmological context. Monthly Notices of the<br>Royal Astronomical Society, 2016, 459, 199-219.                                             | 1.6 | 132       |
| 154 | Spiral-induced velocity and metallicity patterns in a cosmological zoom simulation of a Milky<br>Way-sized galaxy. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 460, L94-L98. | 1.2 | 70        |
| 155 | A fully cosmological model of a Monoceros-like ring. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2779-2793.                                                                      | 1.6 | 75        |
| 156 | Galactic hail: the origin of the high-velocity cloud complex C. Monthly Notices of the Royal<br>Astronomical Society: Letters, 2015, 447, L70-L74.                                                 | 1.2 | 61        |
| 157 | The large-scale properties of simulated cosmological magnetic fields. Monthly Notices of the Royal Astronomical Society, 2015, 453, 4000-4020.                                                     | 1.6 | 60        |
| 158 | The illustris simulation: Public data release. Astronomy and Computing, 2015, 13, 12-37.                                                                                                           | 0.8 | 412       |
| 159 | Effects of simulated cosmological magnetic fields on the galaxy population. Monthly Notices of the<br>Royal Astronomical Society: Letters, 2015, 456, L69-L73.                                     | 1.2 | 40        |
| 160 | Halo mass and assembly history exposed in the faint outskirts: the stellar and dark matter haloes of<br>Illustris galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 444, 237-249. | 1.6 | 117       |
| 161 | The formation of disc galaxies in high-resolution moving-mesh cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1750-1775.                                   | 1.6 | 289       |
| 162 | Diffuse gas properties and stellar metallicities in cosmological simulations of disc galaxy formation.<br>Monthly Notices of the Royal Astronomical Society, 2014, 442, 3745-3760.                 | 1.6 | 43        |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | MAGNETIC FIELDS IN COSMOLOGICAL SIMULATIONS OF DISK GALAXIES. Astrophysical Journal Letters, 2014, 783, L20.                                                                              | 3.0 | 121       |
| 164 | Stellar feedback by radiation pressure and photoionization. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2990-3006.                                                      | 1.6 | 46        |
| 165 | Estimating the Galactic Coronal Density via Ram-Pressure Stripping from Dwarf Satellites. Thirty Years of Astronomical Discovery With UKIRT, 2014, , 167-169.                             | 0.3 | Ο         |
| 166 | On the origin of the warm–hot absorbers in the Milky Way's halo. Monthly Notices of the Royal<br>Astronomical Society, 2013, 433, 1634-1647.                                              | 1.6 | 33        |
| 167 | Unveiling the corona of the Milky Way via ram-pressure stripping of dwarf satellites. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2749-2763.                            | 1.6 | 106       |
| 168 | IONIZED ABSORBERS AS EVIDENCE FOR SUPERNOVA-DRIVEN COOLING OF THE LOWER GALACTIC CORONA.<br>Astrophysical Journal Letters, 2013, 764, L21.                                                | 3.0 | 44        |
| 169 | Fountain-driven gas accretion by the Milky Way. EPJ Web of Conferences, 2012, 19, 08008.                                                                                                  | 0.1 | 3         |
| 170 | Galactic fountains and the rotation of disc-galaxy coronae. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1534-1542.                                                      | 1.6 | 91        |
| 171 | Galactic Fountains and Gas Accretion. AIP Conference Proceedings, 2010, , .                                                                                                               | 0.3 | 2         |
| 172 | Stationary models for the extraplanar gas in disc galaxies. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2451-2462.                                                      | 1.6 | 16        |
| 173 | The mode of gas accretion on to star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2010, , .                                                                       | 1.6 | 68        |
| 174 | Exact density-potential pairs from complex-shifted axisymmetric systems. Monthly Notices of the Royal<br>Astronomical Society, 2008, 387, 1117-1125.                                      | 1.6 | 10        |
| 175 | The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time.<br>Monthly Notices of the Royal Astronomical Society, 0, , stx071.                       | 1.6 | 293       |
| 176 | First results from the IllustrisTNG simulations: radio haloes and magnetic fields. Monthly Notices of the Royal Astronomical Society, 0, , .                                              | 1.6 | 643       |
| 177 | Assembly of supermassive black hole seeds. Monthly Notices of the Royal Astronomical Society, 0, , .                                                                                      | 1.6 | 19        |
| 178 | The evolution of the mass-metallicity relation and its scatter in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 0, , .                                                 | 1.6 | 123       |
| 179 | Satellites of Satellites: The Case for Carina and Fornax. Monthly Notices of the Royal Astronomical Society, 0, , .                                                                       | 1.6 | 21        |
| 180 | Newcomers and suburbanites can drive the evolution of the size-stellar mass relation of early type galaxies in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 0, , . | 1.6 | 3         |