Erik D Demaine

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9580322/erik-d-demaine-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,623 191 30 53 h-index g-index citations papers 199 4,249 0.9 5.34 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
191	Ununfoldable polyhedra with 6 vertices or 6 faces. <i>Computational Geometry: Theory and Applications</i> , 2022 , 103, 101857	0.4	
190	Traversability, Reconfiguration, and Reachability in the Gadget Framework. <i>Lecture Notes in Computer Science</i> , 2022 , 47-58	0.9	
189	Trains, Games, and Complexity: 0/1/2-Player Motion Planning Through Input/Output Gadgets. <i>Lecture Notes in Computer Science</i> , 2022 , 187-198	0.9	1
188	Toward Unfolding Doubly Covered n-Stars. Lecture Notes in Computer Science, 2021, 122-135	0.9	
187	Unlocking history through automated virtual unfolding of sealed documents imaged by X-ray microtomography. <i>Nature Communications</i> , 2021 , 12, 1184	17.4	5
186	Belga B-Trees. <i>Theory of Computing Systems</i> , 2021 , 65, 541-558	0.6	
185	Folding polyominoes with holes into a cube. <i>Computational Geometry: Theory and Applications</i> , 2021 , 93, 101700	0.4	O
184	Approximating the Canadian Traveller Problem with Online Randomization. <i>Algorithmica</i> , 2021 , 83, 152	40143	3 2
183	Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers. <i>Algorithmica</i> , 2021 , 83, 1316-1351	0.9	7
182	Snipperclips: Cutting tools into desired polygons using themselves. <i>Computational Geometry: Theory and Applications</i> , 2021 , 98, 101784	0.4	
181	Continuous flattening of all polyhedral manifolds using countably infinite creases. <i>Computational Geometry: Theory and Applications</i> , 2021 , 98, 101773	0.4	
180	PSPACE-completeness of Pulling Blocks to Reach a Goal. <i>Journal of Information Processing</i> , 2020 , 28, 929-941	0.2	
179	Adventures in Maze Folding Art. Journal of Information Processing, 2020, 28, 745-749	0.2	
178	Symmetric assembly puzzles are hard, beyond a few pieces 2020 , 90, 101648-101648		0
177	Universal hinge patterns for folding strips efficiently into any grid polyhedron. <i>Computational Geometry: Theory and Applications</i> , 2020 , 89, 101633	0.4	O
176	Tetris is NP-hard even with O(1) Rows or Columns. <i>Journal of Information Processing</i> , 2020 , 28, 942-958	0.2	
175	Edge Matching with Inequalities, Triangles, Unknown Shape, and Two Players. <i>Journal of Information Processing</i> , 2020 , 28, 987-1007	O.2	O

174	Who witnesses The Witness? Finding witnesses in The Witness is hard and sometimes impossible. <i>Theoretical Computer Science</i> , 2020 , 839, 41-102	1.1	
173	Polyhedral Characterization of Reversible Hinged Dissections. <i>Graphs and Combinatorics</i> , 2020 , 36, 221	-2a .g	1
172	Infinite All-Layers Simple Foldability. <i>Graphs and Combinatorics</i> , 2020 , 36, 231-244	0.5	
171	Path Puzzles: Discrete Tomography with a Path Constraint is Hard. <i>Graphs and Combinatorics</i> , 2020 , 36, 251-267	0.5	
170	Reconfiguration of satisfying assignments and subset sums: Easy to find, hard to connect. <i>Theoretical Computer Science</i> , 2020 , 806, 332-343	1.1	О
169	Belga B-Trees. <i>Lecture Notes in Computer Science</i> , 2019 , 93-105	0.9	
168	Reconfiguring Undirected Paths. Lecture Notes in Computer Science, 2019, 353-365	0.9	2
167	Particle computation: complexity, algorithms, and logic. <i>Natural Computing</i> , 2019 , 18, 181-201	1.3	10
166	Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams. <i>Algorithmica</i> , 2018 , 80, 3316-3334	0.9	2
165	The fewest clues problem. <i>Theoretical Computer Science</i> , 2018 , 748, 28-39	1.1	
165 164	The fewest clues problem. <i>Theoretical Computer Science</i> , 2018 , 748, 28-39 9. Tangled Tangles 2018 , 141-154	1.1	
		1.1	8
164	9. Tangled Tangles 2018 , 141-154		8
164	9. Tangled Tangles 2018 , 141-154 A simple proof that the (n2 🗓)-puzzle is hard. <i>Theoretical Computer Science</i> , 2018 , 732, 80-84 Reconfiguration of Satisfying Assignments and Subset Sums: Easy to Find, Hard to Connect. <i>Lecture</i>	1.1	8
164 163 162	9. Tangled Tangles 2018, 141-154 A simple proof that the (n2 1)-puzzle is hard. <i>Theoretical Computer Science</i> , 2018, 732, 80-84 Reconfiguration of Satisfying Assignments and Subset Sums: Easy to Find, Hard to Connect. <i>Lecture Notes in Computer Science</i> , 2018, 365-377 Know When to Fold Em: Self-assembly of Shapes by Folding in Oritatami. <i>Lecture Notes in Computer</i>	0.9	
164 163 162	9. Tangled Tangles 2018, 141-154 A simple proof that the (n2 [])-puzzle is hard. <i>Theoretical Computer Science</i> , 2018, 732, 80-84 Reconfiguration of Satisfying Assignments and Subset Sums: Easy to Find, Hard to Connect. <i>Lecture Notes in Computer Science</i> , 2018, 365-377 Know When to Fold Em: Self-assembly of Shapes by Folding in Oritatami. <i>Lecture Notes in Computer Science</i> , 2018, 19-36 Folding Polyominoes into (Poly)Cubes. <i>International Journal of Computational Geometry and</i>	0.9	11
164 163 162 161	9. Tangled Tangles 2018, 141-154 A simple proof that the (n2 [])-puzzle is hard. <i>Theoretical Computer Science</i> , 2018, 732, 80-84 Reconfiguration of Satisfying Assignments and Subset Sums: Easy to Find, Hard to Connect. <i>Lecture Notes in Computer Science</i> , 2018, 365-377 Know When to Fold Em: Self-assembly of Shapes by Folding in Oritatami. <i>Lecture Notes in Computer Science</i> , 2018, 19-36 Folding Polyominoes into (Poly)Cubes. <i>International Journal of Computational Geometry and Applications</i> , 2018, 28, 197-226 An End-to-End Approach to Self-Folding Origami Structures. <i>IEEE Transactions on Robotics</i> , 2018,	0.9	11 2

156	Folding and Punching Paper. Journal of Information Processing, 2017, 25, 590-600	0.2	1
155	Embedding Stacked Polytopes on a Polynomial-Size Grid. <i>Discrete and Computational Geometry</i> , 2017 , 57, 782-809	0.6	1
154	Folded Structures Satisfying Multiple Conditions. <i>Journal of Information Processing</i> , 2017 , 25, 601-609	0.2	1
153	Unfolding and Dissection of Multiple Cubes, Tetrahedra, and Doubly Covered Squares. <i>Journal of Information Processing</i> , 2017 , 25, 610-615	0.2	3
152	Simple Folding is Really Hard. <i>Journal of Information Processing</i> , 2017 , 25, 580-589	0.2	4
151	The Two-Handed Tile Assembly Model is not Intrinsically Universal. <i>Algorithmica</i> , 2016 , 74, 812-850	0.9	6
150	Folding Flat Crease Patterns With Thick Materials. Journal of Mechanisms and Robotics, 2016, 8,	2.2	24
149	Box Pleating is Hard. Lecture Notes in Computer Science, 2016 , 167-179	0.9	4
148	Symmetric Assembly Puzzles are Hard, Beyond a Few Pieces. <i>Lecture Notes in Computer Science</i> , 2016 , 180-192	0.9	1
147	Dissection with the Fewest Pieces is Hard, Even to Approximate. <i>Lecture Notes in Computer Science</i> , 2016 , 37-48	0.9	1
146	Fun with fonts: Algorithmic typography. <i>Theoretical Computer Science</i> , 2015 , 586, 111-119	1.1	2
145	Particle computation: Device fan-out and binary memory 2015,		4
144	New Geometric Algorithms for Fully Connected Staged Self-Assembly. <i>Lecture Notes in Computer Science</i> , 2015 , 104-116	0.9	7
143	Swapping labeled tokens on graphs. <i>Theoretical Computer Science</i> , 2015 , 586, 81-94	1.1	21
142	Worst-Case Optimal Tree Layout in External Memory. <i>Algorithmica</i> , 2015 , 72, 369-378	0.9	4
141	You Should Be Scared of German Ghost. <i>Journal of Information Processing</i> , 2015 , 23, 293-298	0.2	
140	Linear-time algorithm for sliding tokens on trees. <i>Theoretical Computer Science</i> , 2015 , 600, 132-142	1.1	25
139	Picture-Hanging Puzzles. <i>Theory of Computing Systems</i> , 2014 , 54, 531-550	0.6	1

(2013-2014)

138	Reprint of: Refold rigidity of convex polyhedra. <i>Computational Geometry: Theory and Applications</i> , 2014 , 47, 507-517	0.4	О	
137	UNO is hard, even for a single player. <i>Theoretical Computer Science</i> , 2014 , 521, 51-61	1.1	7	
136	Computational Complexity of Piano-Hinged Dissections. <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i> , 2014 , E97.A, 1206-1212	0.4		
135	Polynomial-Time Algorithm for Sliding Tokens on Trees. Lecture Notes in Computer Science, 2014 , 389-4	406 .9	9	
134	2014,		14	
133	Minimizing Movement: Fixed-Parameter Tractability. ACM Transactions on Algorithms, 2014, 11, 1-29	1.2	7	
132	An end-to-end approach to making self-folded 3D surface shapes by uniform heating 2014,		26	
131	Approximability of the subset sum reconfiguration problem. <i>Journal of Combinatorial Optimization</i> , 2014 , 28, 639-654	0.9	12	
130	Necklaces, Convolutions, and X+Y. <i>Algorithmica</i> , 2014 , 69, 294-314	0.9	19	
129	On Cartesian Trees and Range Minimum Queries. <i>Algorithmica</i> , 2014 , 68, 610-625	0.9	17	
128	Polynomial-Time Approximation Schemes for Subset-Connectivity Problems in Bounded-Genus Graphs. <i>Algorithmica</i> , 2014 , 68, 287-311	0.9	19	
127	Unfolding Orthogonal Polyhedra with Quadratic Refinement: The Delta-Unfolding Algorithm. <i>Graphs and Combinatorics</i> , 2014 , 30, 125-140	0.5	7	
126	Computational Complexity and an Integer Programming Model of Shakashaka. <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i> , 2014 , E97.A, 1213-1219	0.4	12	
125	Playing Dominoes Is Hard, Except by Yourself. <i>Lecture Notes in Computer Science</i> , 2014 , 137-146	0.9	1	
124	Reconfiguring Massive Particle Swarms with Limited, Global Control. <i>Lecture Notes in Computer Science</i> , 2014 , 51-66	0.9	14	
123	Flat Foldings of Plane Graphs with Prescribed Angles and Edge Lengths. <i>Lecture Notes in Computer Science</i> , 2014 , 272-283	0.9	2	
122	Fun with Fonts: Algorithmic Typography. Lecture Notes in Computer Science, 2014, 16-27	0.9		
121	Coverage with k-transmitters in the presence of obstacles. <i>Journal of Combinatorial Optimization</i> , 2013 , 25, 208-233	0.9	8	

120	Scheduling to minimize gaps and power consumption. <i>Journal of Scheduling</i> , 2013 , 16, 151-160	1.6	11
119	One-dimensional staged self-assembly. <i>Natural Computing</i> , 2013 , 12, 247-258	1.3	7
118	The Stackelberg minimum spanning tree game on planar and bounded-treewidth graphs. <i>Journal of Combinatorial Optimization</i> , 2013 , 25, 19-46	0.9	7
117	Efficient reconfiguration of lattice-based modular robots. <i>Computational Geometry: Theory and Applications</i> , 2013 , 46, 917-928	0.4	11
116	Refold rigidity of convex polyhedra. Computational Geometry: Theory and Applications, 2013, 46, 979-98	9 0.4	
115	Finding a Hamiltonian Path in a Cube with Specified Turns is Hard. <i>Journal of Information Processing</i> , 2013 , 21, 368-377	0.2	2
114	Combining Binary Search Trees. Lecture Notes in Computer Science, 2013, 388-399	0.9	7
113	The Two-Handed Tile Assembly Model Is Not Intrinsically Universal. <i>Lecture Notes in Computer Science</i> , 2013 , 400-412	0.9	27
112	Blame Trees. Lecture Notes in Computer Science, 2013, 280-290	0.9	
111	Hinged Dissections Exist. <i>Discrete and Computational Geometry</i> , 2012 , 47, 150-186	0.6	17
110	Reconfiguration of list edge-colorings in a graph. <i>Discrete Applied Mathematics</i> , 2012 , 160, 2199-2207	1	40
109	Any Monotone Function Is Realized by Interlocked Polygons. <i>Algorithms</i> , 2012 , 5, 148-157	1.8	1
108	GHOST CHIMNEYS. International Journal of Computational Geometry and Applications, 2012, 22, 207-214	10.3	1
107	NP-completeness of generalized Kaboozle. <i>Journal of Information Processing</i> , 2012 , 20, 713-718	0.2	4
106	Programmable Assembly With Universally Foldable Strings (Moteins). <i>IEEE Transactions on Robotics</i> , 2011 , 27, 718-729	6.5	54
105	The Stackelberg Minimum Spanning Tree Game. <i>Algorithmica</i> , 2011 , 59, 129-144	0.9	24
104	Algorithmic Folding Complexity. <i>Graphs and Combinatorics</i> , 2011 , 27, 341-351	0.5	3
103	Continuous Blooming of Convex Polyhedra. <i>Graphs and Combinatorics</i> , 2011 , 27, 363-376	0.5	7

(2009-2011)

102	(Non)Existence of Pleated Folds: How Paper Folds Between Creases. <i>Graphs and Combinatorics</i> , 2011 , 27, 377-397	0.5	47
101	Integer point sets minimizing average pairwise . <i>Computational Geometry: Theory and Applications</i> , 2011 , 44, 82-94	0.4	9
100	Covering points by disjoint boxes with outliers. <i>Computational Geometry: Theory and Applications</i> , 2011 , 44, 178-190	0.4	13
99	On the complexity of reconfiguration problems. <i>Theoretical Computer Science</i> , 2011 , 412, 1054-1065	1.1	136
98	Planning to fold multiple objects from a single self-folding sheet. <i>Robotica</i> , 2011 , 29, 87-102	2.1	31
97	Efficient constant-velocity reconfiguration of crystalline robots**. <i>Robotica</i> , 2011 , 29, 59-71	2.1	6
96	Embedding Stacked Polytopes on a Polynomial-Size Grid 2011 ,		5
95	Approximability of the Subset Sum Reconfiguration Problem. <i>Lecture Notes in Computer Science</i> , 2011 , 58-69	0.9	8
94	One-Dimensional Staged Self-assembly. Lecture Notes in Computer Science, 2011, 100-114	0.9	11
93	Common Unfoldings of Polyominoes and Polycubes. Lecture Notes in Computer Science, 2011, 44-54	0.9	7
92	Generalized D-Forms Have No Spurious Creases. <i>Discrete and Computational Geometry</i> , 2010 , 43, 179-18	36 .6	4
91	Shape Replication through Self-Assembly and RNase Enzymes 2010 ,		27
90	Confluently Persistent Tries for Efficient Version Control. Algorithmica, 2010, 57, 462-483	0.9	4
89	Locked and Unlocked Chains of Planar Shapes. Discrete and Computational Geometry, 2010, 44, 439-462	0.6	5
88	Approximation algorithms via contraction decomposition. <i>Combinatorica</i> , 2010 , 30, 533-552	0.9	10
87	The Geometry of Binary Search Trees 2009 ,		16
86	Algorithmic Graph Minor Theory: Improved Grid Minor Bounds and Wagner Contraction. <i>Algorithmica</i> , 2009 , 54, 142-180	0.9	19
85	Refolding Planar Polygons. Discrete and Computational Geometry, 2009, 41, 444-460	0.6	10

84	Linear reconfiguration of cube-style modular robots. <i>Computational Geometry: Theory and Applications</i> , 2009 , 42, 652-663	0.4	19
83	The distance geometry of music. Computational Geometry: Theory and Applications, 2009, 42, 429-454	0.4	14
82	Dynamic ham-sandwich cuts in the plane. <i>Computational Geometry: Theory and Applications</i> , 2009 , 42, 419-428	0.4	2
81	Wrapping spheres with flat paper. Computational Geometry: Theory and Applications, 2009, 42, 748-757	0.4	13
8o	Filling holes in triangular meshes by curve unfolding 2009,		15
79	Realistic Reconfiguration of Crystalline (and Telecube) Robots. <i>Springer Tracts in Advanced Robotics</i> , 2009 , 433-447	0.5	5
78	Approximation Algorithms via Structural Results for Apex-Minor-Free Graphs. <i>Lecture Notes in Computer Science</i> , 2009 , 316-327	0.9	5
77	On Cartesian Trees and Range Minimum Queries. <i>Lecture Notes in Computer Science</i> , 2009 , 341-353	0.9	32
76	The Stackelberg Minimum Spanning Tree Game on Planar and Bounded-Treewidth Graphs. <i>Lecture Notes in Computer Science</i> , 2009 , 125-136	0.9	4
75	Minimal Locked Trees. <i>Lecture Notes in Computer Science</i> , 2009 , 61-73	0.9	3
74	Combination Can Be Hard: Approximability of the Unique Coverage Problem. <i>SIAM Journal on Computing</i> , 2008 , 38, 1464-1483	1.1	39
73	Constraint Logic: A Uniform Framework for Modeling Computation as Games 2008,		9
72	Hinged dissections exist 2008,		4
71	Moving-Baseline Localization 2008,		9
70	Staged self-assembly: nanomanufacture of arbitrary shapes with O(1) glues. <i>Natural Computing</i> , 2008 , 7, 347-370	1.3	75
69	Subquadratic Algorithms for 3SUM. <i>Algorithmica</i> , 2008 , 50, 584-596	0.9	44
68	Communication-Aware Processor Allocation for Supercomputers: Finding Point Sets of Small Average Distance. <i>Algorithmica</i> , 2008 , 50, 279-298	0.9	32
67	Optimally Adaptive Integration of Univariate Lipschitz Functions. <i>Algorithmica</i> , 2008 , 50, 255-278	0.9	5

(2006-2008)

66	Linearity of grid minors in treewidth with applications through bidimensionality. <i>Combinatorica</i> , 2008 , 28, 19-36	0.9	86
65	Approximability of partitioning graphs with supply and demand. <i>Journal of Discrete Algorithms</i> , 2008 , 6, 627-650		20
64	Edge-unfolding nested polyhedral bands. <i>Computational Geometry: Theory and Applications</i> , 2008 , 39, 30-42	0.4	5
63	Reconfiguration of Cube-Style Modular Robots Using O(logn) Parallel Moves. <i>Lecture Notes in Computer Science</i> , 2008 , 342-353	0.9	13
62	The Bidimensionality Theory and Its Algorithmic Applications. Computer Journal, 2007, 51, 292-302	1.3	123
61	Quickly deciding minor-closed parameters in general graphs. <i>European Journal of Combinatorics</i> , 2007 , 28, 311-314	0.7	9
60	Jigsaw Puzzles, Edge Matching, and Polyomino Packing: Connections and Complexity. <i>Graphs and Combinatorics</i> , 2007 , 23, 195-208	0.5	118
59	Geodesic Ham-Sandwich Cuts. <i>Discrete and Computational Geometry</i> , 2007 , 37, 325-339	0.6	9
58	Plane Embeddings of Planar Graph Metrics. Discrete and Computational Geometry, 2007, 38, 615-637	0.6	2
57	A unified access bound on comparison-based dynamic dictionaries. <i>Theoretical Computer Science</i> , 2007 , 382, 86-96	1.1	24
56	An Optimal Cache-Oblivious Priority Queue and Its Application to Graph Algorithms. <i>SIAM Journal on Computing</i> , 2007 , 36, 1672-1695	1.1	20
55	Dynamic OptimalityAlmost. SIAM Journal on Computing, 2007, 37, 240-251	1.1	27
54	The Stackelberg Minimum Spanning Tree Game. Lecture Notes in Computer Science, 2007, 64-76	0.9	8
53	Geometric Folding Algorithms: Linkages, Origami, Polyhedra 2007 ,		270
52	Morpion Solitaire. Theory of Computing Systems, 2006, 39, 439-453	0.6	7
51	Puzzles, Art, and Magic with Algorithms. <i>Theory of Computing Systems</i> , 2006 , 39, 473-481	0.6	5
50	Locked and unlocked chains of planar shapes 2006,		5
49	Voronoi game on graphs and its complexity 2006 ,		7

48	The Bidimensional Theory of Bounded-Genus Graphs. <i>SIAM Journal on Discrete Mathematics</i> , 2006 , 20, 357-371	0.7	23
47	Correlation clustering in general weighted graphs. <i>Theoretical Computer Science</i> , 2006 , 361, 172-187	1.1	126
46	Online searching with turn cost. <i>Theoretical Computer Science</i> , 2006 , 361, 342-355	1.1	65
45	Geometric Restrictions on Producible Polygonal Protein Chains. <i>Algorithmica</i> , 2006 , 44, 167-181	0.9	1
44	Low-Dimensional Embedding with Extra Information. <i>Discrete and Computational Geometry</i> , 2006 , 36, 609-632	0.6	5
43	Optimally Adaptive Integration of Univariate Lipschitz Functions. <i>Lecture Notes in Computer Science</i> , 2006 , 142-153	0.9	
42	Algorithmic Graph Minor Theory: Improved Grid Minor Bounds and Wagner Contraction. <i>Lecture Notes in Computer Science</i> , 2006 , 3-15	0.9	0
41	Approximability of Partitioning Graphs with Supply and Demand. <i>Lecture Notes in Computer Science</i> , 2006 , 121-130	0.9	2
40	Optimal Covering Tours with Turn Costs. SIAM Journal on Computing, 2005, 35, 531-566	1.1	44
39	PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. <i>Theoretical Computer Science</i> , 2005 , 343, 72-96	1.1	137
38	Hinged dissection of polyominoes and polyforms. <i>Computational Geometry: Theory and Applications</i> , 2005 , 31, 237-262	0.4	25
37	Fast allocation and deallocation with an improved buddy system. <i>Acta Informatica</i> , 2005 , 41, 273-291	0.9	16
36	Exponential Speedup of Fixed-Parameter Algorithms for Classes of Graphs Excluding Single-Crossing Graphs as Minors. <i>Algorithmica</i> , 2005 , 41, 245-267	0.9	30
35	Representing Trees of Higher Degree. <i>Algorithmica</i> , 2005 , 43, 275-292	0.9	140
34	Subexponential parameterized algorithms on bounded-genus graphs and H -minor-free graphs. <i>Journal of the ACM</i> , 2005 , 52, 866-893	2	201
33	Fixed-parameter algorithms for (k , r)-center in planar graphs and map graphs. ACM Transactions on Algorithms, 2005 , 1, 33-47	1.2	72
32	PersiFS 2005 ,		5
31	Fast Algorithms for Hard Graph Problems: Bidimensionality, Minors, and Local Treewidth. <i>Lecture Notes in Computer Science</i> , 2005 , 517-533	0.9	12

30	Hinged Dissection of Polypolyhedra. Lecture Notes in Computer Science, 2005, 205-217	0.9	15
29	Geodesic ham-sandwich cuts 2004 ,		11
28	An energy-driven approach to linkage unfolding 2004 ,		16
27	Optimal adaptive algorithms for finding the nearest and farthest point on a parametric black-box curve 2004 ,		2
26	Diameter and Treewidth in Minor-Closed Graph Families, Revisited. <i>Algorithmica</i> , 2004 , 40, 211-215	0.9	25
25	Finding hidden independent sets in interval graphs. <i>Theoretical Computer Science</i> , 2004 , 310, 287-307	1.1	8
24	Solitaire Clobber. <i>Theoretical Computer Science</i> , 2004 , 313, 325-338	1.1	8
23	Appendix B: Open problems at the 2002 Dagstuhl Seminar on Algorithmic Combinatorial Game Theory. <i>Theoretical Computer Science</i> , 2004 , 313, 539-543	1.1	3
22	Approximation algorithms for classes of graphs excluding single-crossing graphs as minors. <i>Journal of Computer and System Sciences</i> , 2004 , 69, 166-195	1	26
21	Fun-SortBr the chaos of unordered binary search. <i>Discrete Applied Mathematics</i> , 2004 , 144, 231-236	1	10
20	Tight bounds on maximal and maximum matchings. <i>Discrete Mathematics</i> , 2004 , 285, 7-15	0.7	52
19	When can you fold a map?. Computational Geometry: Theory and Applications, 2004, 29, 23-46	0.4	33
18	What is the optimal shape of a city?. Journal of Physics A, 2004, 37, 147-159		21
17	Bidimensional Parameters and Local Treewidth. SIAM Journal on Discrete Mathematics, 2004, 18, 501-51	15.7	51
16	The Bidimensional Theory of Bounded-Genus Graphs. Lecture Notes in Computer Science, 2004, 191-203	0.9	2
15	Blowing Up Polygonal Linkages. <i>Discrete and Computational Geometry</i> , 2003 , 30, 205-239	0.6	50
14	Ununfoldable polyhedra with convex faces. <i>Computational Geometry: Theory and Applications</i> , 2003 , 24, 51-62	0.4	34
13	A linear lower bound on index size for text retrieval. <i>Journal of Algorithms</i> , 2003 , 48, 2-15		23

12	Correlation Clustering with Partial Information. Lecture Notes in Computer Science, 2003, 1-13	0.9	32
11	Enumerating Foldings and Unfoldings Between Polygons and Polytopes. <i>Graphs and Combinatorics</i> , 2002 , 18, 93-104	0.5	9
10	ONLINE ROUTING IN CONVEX SUBDIVISIONS. <i>International Journal of Computational Geometry and Applications</i> , 2002 , 12, 283-295	0.3	27
9	Infinitesimally locked self-touching linkages with applications to locked trees. <i>Contemporary Mathematics</i> , 2002 , 287-311	1.6	10
8	1.5-Approximation for Treewidth of Graphs Excluding a Graph with One Crossing as a Minor. <i>Lecture Notes in Computer Science</i> , 2002 , 67-80	0.9	5
7	Polygons cuttable by a circular saw. Computational Geometry: Theory and Applications, 2001, 20, 69-84	0.4	20
6	Reconfiguring convex polygons. Computational Geometry: Theory and Applications, 2001, 20, 85-95	0.4	11
5	Efficient Algorithms for Petersen's Matching Theorem. <i>Journal of Algorithms</i> , 2001 , 38, 110-134		35
4	Folding flat silhouettes and wrapping polyhedral packages: New results in computational origami. <i>Computational Geometry: Theory and Applications</i> , 2000 , 16, 3-21	0.4	53
3	Fast Allocation and Deallocation with an Improved Buddy System. <i>Lecture Notes in Computer Science</i> , 1999 , 84-96	0.9	2
2	Juggling and Card Shuffling Meet Mathematical Fonts297-304		
1	Games, Puzzles, and Computation		77