
Giuseppe Pandini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thyroid Stem Cells But Not Differentiated Thyrocytes Are Sensitive to Slightly Increased Concentrations of Heavy Metals. Frontiers in Endocrinology, 2021, 12, 652675.	1.5	10
2	Identification of a novel EphB4 phosphodegron regulated by the autocrine IGFII/IRA axis in malignant mesothelioma. Oncogene, 2019, 38, 5987-6001.	2.6	13
3	The Copper(II)-Assisted Connection between NGF and BDNF by Means of Nerve Growth Factor-Mimicking Short Peptides. Cells, 2019, 8, 301.	1.8	25
4	Effect of low-dose tungsten on human thyroid stem/precursor cells and their progeny. Endocrine-Related Cancer, 2019, 26, 713-725.	1.6	10
5	Amyloid Beta monomers regulate cyclic adenosine monophosphate response element binding protein functions by activating typeâ€1 insulinâ€kke growth factor receptors in neuronal cells. Aging Cell, 2018, 17, e12684.	3.0	60
6	Chromosome 15 structural abnormalities: effect on IGF1R gene expression and function. Endocrine Connections, 2017, 6, 528-539.	0.8	25
7	The Inorganic Side of NGF: Copper(II) and Zinc(II) Affect the NGF Mimicking Signaling of the N-Terminus Peptides Encompassing the Recognition Domain of TrkA Receptor. Frontiers in Neuroscience, 2016, 10, 569.	1.4	26
8	Neurotrophin-mimicking peptides at the biointerface with gold respond to copper ion stimuli. Physical Chemistry Chemical Physics, 2016, 18, 30595-30604.	1.3	7
9	Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons. Frontiers in Cellular Neuroscience, 2015, 9, 297.	1.8	44
10	Insulin Has Multiple Antiamyloidogenic Effects on Human Neuronal Cells. Endocrinology, 2013, 154, 375-387.	1.4	71
11	Proinsulin Binds with High Affinity the Insulin Receptor Isoform A and Predominantly Activates the Mitogenic Pathway. Endocrinology, 2012, 153, 2152-2163.	1.4	87
12	Reactivation of p53 mutants by p53 reactivation and induction of massive apoptosis in thyroid cancer cells. International Journal of Cancer, 2012, 130, 2259-2270.	2.3	45
13	Efficacy of and resistance to anti-IGF-1R therapies in Ewing's sarcoma is dependent on insulin receptor signaling. Oncogene, 2011, 30, 2730-2740.	2.6	119
14	Research Resource: New and Diverse Substrates for the Insulin Receptor Isoform A Revealed by Quantitative Proteomics After Stimulation With IGF-II or Insulin. Molecular Endocrinology, 2011, 25, 1456-1468.	3.7	48
15	Insulin Receptor Isoforms and Insulin-Like Growth Factor Receptor in Human Follicular Cell Precursors from Papillary Thyroid Cancer and Normal Thyroid. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 766-774.	1.8	130
16	Insulin analogues differently activate insulin receptor isoforms and post-receptor signalling. Diabetologia, 2010, 53, 1743-1753.	2.9	127
17	Palmitate Affects Insulin Receptor Phosphorylation and Intracellular Insulin Signal in a Pancreatic α-Cell Line. Endocrinology, 2010, 151, 4197-4206.	1.4	41
18	Effects of prophylaxis with iodised salt in an area of endemic goitre in north-eastern Sicily. Journal of Endocrinological Investigation, 2010, 33, 300-305.	1.8	6

GIUSEPPE PANDINI

#	Article	IF	CITATIONS
19	HMGA1 protein is a positive regulator of the insulin-like growth factor-I receptor gene. European Journal of Cancer, 2010, 46, 1919-1926.	1.3	32
20	Role of Cyclic AMP Response Element–Binding Protein in Insulin-like Growth Factor-I Receptor Up-regulation by Sex Steroids in Prostate Cancer Cells. Cancer Research, 2009, 69, 7270-7277.	0.4	41
21	Differential Signaling Activation by Insulin and Insulin-Like Growth Factors I and II upon Binding to Insulin Receptor Isoform A. Endocrinology, 2009, 150, 3594-3602.	1.4	64
22	Sex Steroids Upregulate the IGFâ€1R in Prostate Cancer Cells through a Nongenotropic Pathway. Annals of the New York Academy of Sciences, 2009, 1155, 263-267.	1.8	14
23	Diabetes and cancer. Endocrine-Related Cancer, 2009, 16, 1103-1123.	1.6	857
24	Insulin Receptor Isoforms and Insulin Receptor/Insulin-Like Growth Factor Receptor Hybrids in Physiology and Disease. Endocrine Reviews, 2009, 30, 586-623.	8.9	889
25	Chapter 4 câ€Abl and Insulin Receptor Signalling. Vitamins and Hormones, 2009, 80, 77-105.	0.7	23
26	The role of insulin receptors and IGF-I receptors in cancer and other diseases. Archives of Physiology and Biochemistry, 2008, 114, 23-37.	1.0	365
27	TAp73α Increases p53 Tumor Suppressor Activity in Thyroid Cancer Cells via the Inhibition of Mdm2-Mediated Degradation. Molecular Cancer Research, 2008, 6, 64-77.	1.5	26
28	Role of c-Abl in Directing Metabolic versus Mitogenic Effects in Insulin Receptor Signaling. Journal of Biological Chemistry, 2007, 282, 26077-26088.	1.6	29
29	17β-Estradiol Up-regulates the Insulin-like Growth Factor Receptor through a Nongenotropic Pathway in Prostate Cancer Cells. Cancer Research, 2007, 67, 8932-8941.	0.4	35
30	Functional responses and in vivo anti-tumour activity of h7C10: A humanised monoclonal antibody with neutralising activity against the insulin-like growth factor-1 (IGF-1) receptor and insulin/IGF-1 hybrid receptors. European Journal of Cancer, 2007, 43, 1318-1327.	1.3	65
31	Peroxisomal Proliferator-Activated Receptor-Î ³ Agonists Induce Partial Reversion of Epithelial-Mesenchymal Transition in Anaplastic Thyroid Cancer Cells. Endocrinology, 2006, 147, 4463-4475.	1.4	96
32	Androgens Up-regulate the Insulin-like Growth Factor-I Receptor in Prostate Cancer Cells. Cancer Research, 2005, 65, 1849-1857.	0.4	188
33	Interleukin-4 Stimulates Papillary Thyroid Cancer Cell Survival: Implications in Patients with Thyroid Cancer and Concomitant Graves' Disease. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2880-2889.	1.8	35
34	IGF-II Binding to Insulin Receptor Isoform A Induces a Partially Different Gene Expression Profile from Insulin Binding. Annals of the New York Academy of Sciences, 2004, 1028, 450-456.	1.8	42
35	Differential Gene Expression Induced by Insulin and Insulin-like Growth Factor-II through the Insulin Receptor Isoform A. Journal of Biological Chemistry, 2003, 278, 42178-42189.	1.6	86
36	Insulin and Hybrid Insulin/IGF Receptors Are Major Regulators of Breast Cancer Cells. Breast Disease, 2003, 17, 73-89.	0.4	59

GIUSEPPE PANDINI

#	Article	IF	CITATIONS
37	Insulin/Insulin-like Growth Factor I Hybrid Receptors Have Different Biological Characteristics Depending on the Insulin Receptor Isoform Involved. Journal of Biological Chemistry, 2002, 277, 39684-39695.	1.6	413
38	A Novel Autocrine Loop Involving IGF-II and the Insulin Receptor Isoform-A Stimulates Growth of Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 245-254.	1.8	216
39	In IGF-I receptor-deficient leiomyosarcoma cells autocrine IGF-II induces cell invasion and protection from apoptosis via the insulin receptor isoform A. Oncogene, 2002, 21, 8240-8250.	2.6	150
40	The IGF system in thyroid cancer: new concepts. Journal of Clinical Pathology, 2001, 54, 121-124.	2.1	155
41	Insulin/Insulin-Like Growth Factor I Hybrid Receptors Overexpression Is Not an Early Defect in Insulin-Resistant Subjects. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4219-4223.	1.8	9
42	Insulin receptor activation by IGF-II in breast cancers: evidence for a new autocrine/paracrine mechanism. Oncogene, 1999, 18, 2471-2479.	2.6	261
43	Insulin/IGF-I hybrid receptors play a major role in IGF-I signaling in thyroid cancer. Biochimie, 1999, 81, 403-407.	1.3	96
44	Insulin Receptor Isoform A, a Newly Recognized, High-Affinity Insulin-Like Growth Factor II Receptor in Fetal and Cancer Cells. Molecular and Cellular Biology, 1999, 19, 3278-3288.	1.1	804
45	Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clinical Cancer Research, 1999, 5, 1935-44.	3.2	191
46	Insulin Receptors in Breast Cancer. Annals of the New York Academy of Sciences, 1996, 784, 173-188.	1.8	66
47	Overexpression of membrane glycoprotein PC-1 in MDA-MB231 breast cancer cells is associated with inhibition of insulin receptor tyrosine kinase activity Molecular Endocrinology, 1996, 10, 1318-1326.	3.7	53