List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acyl Group Migration in Pyranosides as Studied by Experimental and Computational Methods. Chemistry - A European Journal, 2022, 28, .	3.3	8
2	Absence of Intermediates in the BINOL-Derived Mg(II)/Phosphate-Catalyzed Desymmetrizative Ring Expansion of 1-Vinylcyclobutanols. Journal of Organic Chemistry, 2022, 87, 693-707.	3.2	11
3	The Pseudotransannular Ring Opening of 1â€Aminocycloheptâ€4â€eneâ€derived Epoxides in the Synthesis of Tropane Alkaloids: Total Synthesis of (±)â€Ferrugine. European Journal of Organic Chemistry, 2021, 2021, 2855-2861.	2.4	2
4	Enantioselective Synthesis of Tropanes: BrÃ,nsted Acid Catalyzed Pseudotransannular Desymmetrization. Angewandte Chemie - International Edition, 2020, 59, 6780-6784.	13.8	15
5	Enantioselective Synthesis of Tropanes: BrÃnsted Acid Catalyzed Pseudotransannular Desymmetrization. Angewandte Chemie, 2020, 132, 6846-6850.	2.0	5
6	Concerted Albeit Not Pericyclic Cycloadditions: Understanding the Mechanism of the (4+3) Cycloaddition between Nitrones and 1,2â€Diazaâ€1,3â€dienes. European Journal of Organic Chemistry, 2019, 2019, 391-400.	2.4	4
7	Transient and intermediate carbocations in ruthenium tetroxide oxidation of saturated rings. Beilstein Journal of Organic Chemistry, 2019, 15, 1552-1562.	2.2	4
8	Rearrangement Reactions in Azaâ€Vinylogous Povarov Products: Metalâ€Free Synthesis of C ³ â€Functionalized Quinolines and Studies on their Synthetic Application. European Journal of Organic Chemistry, 2019, 2019, 6452-6464.	2.4	4
9	UDPâ€GlcNAc Analogues as Inhibitors of <i>O</i> â€GlcNAc Transferase (OGT): Spectroscopic, Computational, and Biological Studies. Chemistry - A European Journal, 2018, 24, 7264-7272.	3.3	8
10	Carboxylates as Nucleophiles in the Enantioselective Ringâ€Opening of Formylcyclopropanes under Iminium Ion Catalysis. Chemistry - A European Journal, 2018, 24, 8764-8768.	3.3	19
11	Catalytic Enantioselective Cloke–Wilson Rearrangement. Angewandte Chemie, 2018, 130, 8357-8361.	2.0	36
12	Revealing carbocations in highly asynchronous concerted reactions: The ene-type reaction between dithiocarboxylic acids and alkenes. Tetrahedron, 2018, 74, 5627-5634.	1.9	13
13	Catalytic Enantioselective Cloke–Wilson Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 8225-8229.	13.8	86
14	A molecular electron density theory study of the [3 + 2] cycloaddition reaction of nitrones with ketenes. Organic and Biomolecular Chemistry, 2017, 15, 1618-1627.	2.8	33
15	Regioselectivity Change in the Organocatalytic Enantioselective (3+2) Cycloaddition with Nitrones through Cooperative Hydrogenâ€Bonding Catalysis/Iminium Activation. Chemistry - A European Journal, 2017, 23, 2764-2768.	3.3	17
16	Pivotal Neighboringâ€Group Participation in Substitution versus Elimination Reactions – Computational Evidence for Ion Pairs in the Thionation of Alcohols with Lawesson's Reagent. European Journal of Organic Chemistry, 2017, 2017, 1952-1960.	2.4	21
17	Introducing topology to assess the synchronicity of organic reactions. Dual reactivity of oximes with alkenes as a case study. Organic Chemistry Frontiers, 2017, 4, 1541-1554.	4.5	22
18	New mechanistic interpretations for nitrone reactivity. Organic and Biomolecular Chemistry, 2017, 15, 3364-3375.	2.8	31

#	Article	IF	CITATIONS
19	Organocatalytic Enantioselective Synthesis of Trifluoromethyl ontaining Tetralin Derivatives by Sequential (Hetero)Michael Reaction–Intramolecular Nitrone Cycloaddition. Advanced Synthesis and Catalysis, 2017, 359, 3752-3764.	4.3	10
20	BET & ELF Quantum Topological Analysis of Neutral 2-Aza-Cope Rearrangement of γ-Alkenyl Nitrones. Molecules, 2017, 22, 1371.	3.8	4
21	Azomethine Ylides from Nitrones: Using Catalytic <i>n</i> BuLi for the Totally Stereoselective Synthesis of <i>trans</i> â€2â€Alkylâ€3â€oxazolines. Chemistry - A European Journal, 2016, 22, 11527-11532.	3.3	19
22	Glycomimetics Targeting Glycosyltransferases: Synthetic, Computational and Structural Studies of Lessâ€Polar Conjugates. Chemistry - A European Journal, 2016, 22, 7215-7224.	3.3	19
23	Rational Design of Glycomimetic Compounds Targeting theSaccharomyces cerevisiaeTransglycosylase Gas2. Chemical Biology and Drug Design, 2016, 87, 163-170.	3.2	2
24	Azomethine Ylides from Nitrones: Using Catalytic n BuLi for the Totally Stereoselective Synthesis of trans -2-Alkyl-3-oxazolines. Chemistry - A European Journal, 2016, 22, 11477-11477.	3.3	0
25	Nucleoside Diphosphate Sugar Analogues that Target Glycosyltransferases. Asian Journal of Organic Chemistry, 2016, 5, 1413-1427.	2.7	5
26	Synthesis of Aminoâ€Acid–Nucleoside Conjugates. Asian Journal of Organic Chemistry, 2016, 5, 1525-1534.	2.7	2
27	Revisiting oxime–nitrone tautomerism. Evidence of nitrone tautomer participation in oxime nucleophilic addition reactions. RSC Advances, 2016, 6, 22161-22173.	3.6	29
28	Revealing Stepwise Mechanisms in Dipolar Cycloaddition Reactions: Computational Study of the Reaction between Nitrones and Isocyanates. Journal of Organic Chemistry, 2016, 81, 673-680.	3.2	25
29	Mechanism Switch in Mannichâ€īype Reactions: ELF and NCI Topological Analyses of the Reaction between Nitrones and Lithium Enolates. European Journal of Organic Chemistry, 2015, 2015, 4143-4152.	2.4	16
30	Understanding Bond Formation in Polar One-Step Reactions. Topological Analyses of the Reaction between Nitrones and Lithium Ynolates. Journal of Organic Chemistry, 2015, 80, 4076-4083.	3.2	32
31	Highly diastereoselective 1,3-dipolar cycloadditions of chiral non-racemic nitrones to 1,2-diaza-1,3-dienes: an experimental and computational investigation. Organic and Biomolecular Chemistry, 2014, 12, 8888-8901.	2.8	14
32	DFT Investigation of the Mechanism of <i>E</i> / <i>Z</i> Isomerization of Nitrones. Journal of Organic Chemistry, 2014, 79, 8358-8365.	3.2	26
33	[2n2Ï€ + 2n2Ï€] Cycloadditions: an alternative to forbidden [4Ï€ + 4Ï€] processes. The case of nitrone dimerization. Organic and Biomolecular Chemistry, 2014, 12, 517-525.	2.8	11
34	Theoretical Elucidation of the Mechanism of the Cycloaddition between Nitrone Ylides and Electron-Deficient Alkenes. Journal of Organic Chemistry, 2014, 79, 2189-2202.	3.2	15
35	Recent Advances on the Enantioselective Synthesis of C-Nucleosides Inhibitors of Inosine Monophosphate Dehydrogenase (IMPDH). Current Topics in Medicinal Chemistry, 2014, 14, 1212-1224.	2.1	8
36	Evasive Neutral 2â€Azaâ€Cope Rearrangements. Kinetic and Computational Studies with Cyclic Nitrones. European Journal of Organic Chemistry, 2013, 2013, 5721-5730.	2.4	21

#	Article	IF	CITATIONS
37	Synthesis of O- and C-glycosides derived from β-(1,3)-d-glucans. Carbohydrate Research, 2013, 382, 9-18.	2.3	5
38	Stereoselective 1,3-dipolar cycloadditions of nitrones derived from amino acids. Asymmetric synthesis of N-(alkoxycarbonylmethyl)-3-hydroxypyrrolidin-2-ones. Tetrahedron, 2013, 69, 9381-9390.	1.9	11
39	Recent Progress on Fucosyltransferase Inhibitors. Mini-Reviews in Medicinal Chemistry, 2012, 12, 1455-1464.	2.4	12
40	CROSS-COUPLING REACTIONS FOR THE SYNTHESIS OF C-GLYCOSIDES AND RELATED COMPOUNDS. Heterocycles, 2012, 86, 791.	0.7	23
41	Recent Advances on the Synthesis of Piperidines through Ruthenium-Catalyzed Ring-Closing Metathesis (RCM) Reactions. Heterocycles, 2012, 84, 75.	0.7	34
42	Highly stereoselective synthesis of imino-C-di- and trisaccharides as hydrolytically stable glycomimetics. Tetrahedron, 2012, 68, 6674-6687.	1.9	8
43	Sequential Nucleophilic Addition/Intramolecular Cycloaddition to Chiral Nonracemic Cyclic Nitrones: A Highly Stereoselective Approach to Polyhydroxynortropane Alkaloids. Journal of Organic Chemistry, 2011, 76, 4139-4143.	3.2	45
44	Thiourea catalyzed organocatalytic enantioselective Michael addition of diphenyl phosphite to nitroalkenes. Organic and Biomolecular Chemistry, 2011, 9, 2777.	2.8	43
45	Structural Insights into the Mechanism of Protein O-Fucosylation. PLoS ONE, 2011, 6, e25365.	2.5	85
46	High-yield synthesis of pyrrolidinyl PNA monomers. Tetrahedron Letters, 2011, 52, 6003-6006.	1.4	5
47	Water-compatible one-pot organocatalytic asymmetric synthesis of cyclic nitrones. Application in in in intramolecular 1,3-dipolar cycloadditions. Tetrahedron Letters, 2011, 52, 5976-5979.	1.4	18
48	Enhanced Efficiency of Thiourea Catalysts by External BrÃ,nsted Acids in the Friedel–Crafts Alkylation of Indoles. European Journal of Organic Chemistry, 2011, 2011, 3700-3705.	2.4	65
49	Nitrone Ylides: Two Possible 1,3â€Dipolar Cycloadditions but Only One Stepwise Formation of allâ€ <i>cis</i> â€5â€Arylâ€2,3,5â€trisubstituted <i>N</i> â€Hydroxypyrrolidines. European Journal of Organic Chemistry, 2011, 2011, 6567-6573.	2.4	15
50	Organocatalytic Activation of Imines and Related Compounds Through Hydrogen-Bond Interactions. Current Organic Chemistry, 2011, 15, 2184-2209.	1.6	8
51	Mannich-Type Reactions of Nitrones, Oximes, and Hydrazones. Synlett, 2011, 2011, 1965-1977.	1.8	31
52	Tunable Diastereoselection of Biased Rigid Systems by Lewis Acid Induced Conformational Effects: A Rationalization of the Vinylation of Cyclic Nitrones En Route to Polyhydroxylated Pyrrolidines. Chemistry - A European Journal, 2010, 16, 9910-9919.	3.3	28
53	Expanding the Limits of Organoboron Chemistry: Synthesis of Functionalized Arylboronates. Angewandte Chemie - International Edition, 2010, 49, 7164-7165.	13.8	28
54	Synthesis of d-arabinose-derived polyhydroxylated pyrrolidine, indolizidine and pyrrolizidine alkaloids. Total synthesis of hyacinthacine A2. Tetrahedron, 2010, 66, 1220-1227.	1.9	72

#	Article	IF	CITATIONS
55	Asymmetric organocatalytic synthesis of γ-nitrocarbonyl compounds through Michael and Domino reactions. Tetrahedron: Asymmetry, 2010, 21, 2561-2601.	1.8	151
56	Experimental and theoretical studies on Mannich-type reactions of chiral non-racemic N-(benzyloxyethyl) nitrones. Tetrahedron: Asymmetry, 2010, 21, 2934-2943.	1.8	13
57	Enantioselective Organocatalytic Diels-Alder Reactions. Synthesis, 2010, 2010, 1-26.	2.3	154
58	Synthesis of N-(Benzyloxyethyl)- and N-(Alkoxycarbonylmethyl)nitrones. Synthesis, 2010, 2010, 678-688.	2.3	3
59	Chemistry and Biology of Iminosugar Di- and Oligosaccharides. Current Chemical Biology, 2009, 3, 253-271.	0.5	18
60	Catalytic Enantioselective Azaâ€Henry Reactions. European Journal of Organic Chemistry, 2009, 2009, 2401-2420.	2.4	186
61	Organocatalyzed Strecker reactions. Tetrahedron, 2009, 65, 1219-1234.	1.9	130
62	Intramolecular 1,3-dipolar cycloaddition of N-alkenyl nitrones en route to glycosyl piperidines. Tetrahedron Letters, 2009, 50, 7152-7155.	1.4	16
63	Chemistry and Biology of Iminosugar Di- and Oligosaccharides. Current Chemical Biology, 2009, 3, 253-271.	0.5	14
64	Nucleophilic Additions to Cyclic Nitrones en Route to Iminocyclitols – Total Syntheses of DMDP, 6â€deoxyâ€ÐMDP, DABâ€1, CYBâ€3, Nectrisine, and Radicamine B. European Journal of Organic Chemistry, 200 2008, 2929-2947.	8, 2.4	119
65	Exploring Nitrone Chemistry: Towards the Enantiodivergent Synthesis of 6â€Substituted 4â€Hydroxypipecolic Acid Derivatives. European Journal of Organic Chemistry, 2008, 2008, 3943-3959.	2.4	34
66	Current Developments in the Synthesis and Biological Activity of Aza-C-Nucleosides:Immucillins and Related Compounds. Current Medicinal Chemistry, 2008, 15, 954-967.	2.4	31
67	Furan Oxidations in Organic Synthesis: Recent Advances and Applications. Current Organic Chemistry, 2007, 11, 1076-1091.	1.6	74
68	Hydroxylamine Oxygen as Nucleophile in Palladium(0)- and Palladium(II)-Catalyzed Allylic Alkylation: A Novel Access to Isoxazolidines. Synlett, 2007, 2007, 0944-0948.	1.8	18
69	Nucleophilic Additions and Redox Reactions of Polyhydroxypyrroline N-Oxides on the Way to Pyrrolidine Alkaloids: Total Synthesis of Radicamine B. Synlett, 2007, 2007, 2651-2654.	1.8	35
70	A DFT study on the 1,3-dipolar cycloaddition reactions of C-(hetaryl) nitrones with methyl acrylate and vinyl acetate. Tetrahedron, 2007, 63, 1448-1458.	1.9	37
71	3-(Aminomethyl)-2-(carboxymethyl)isoxazolidinyl nucleosides: building blocks for peptide nucleic acid analogues. Tetrahedron: Asymmetry, 2007, 18, 1517-1520.	1.8	13
72	Experimental and theoretical evidences of 2-aza-Cope rearrangement of nitrones. Tetrahedron Letters, 2007, 48, 3385-3388.	1.4	27

#	Article	IF	CITATIONS
73	1H–15N HMBC as a valuable tool for the identification and characterization of nitrones. Tetrahedron Letters, 2007, 48, 4101-4104.	1.4	2
74	Enantiodivergent Synthesis of d- and l-erythro-Sphingosines through Mannich-Type Reactions of N-Benzyl-2,3-O-isopropylidene-d-glyceraldehyde Nitrone. Journal of Organic Chemistry, 2006, 71, 4685-4688.	3.2	32
75	High stereocontrol in the allylation of chiral non-racemic α-alkoxy and α-amino nitrones. Tetrahedron Letters, 2006, 47, 3311-3314.	1.4	24
76	Stereoselective synthesis of pyrrolidinyl glycines from nitrones: complementarity of nucleophilic addition and 1,3-dipolar cycloaddition. Tetrahedron Letters, 2006, 47, 5013-5016.	1.4	17
77	A DFT Study of the Molecular Mechanisms of the Nucleophilic Addition of Ester-Derived Lithium Enolates and Silyl Ketene Acetals to Nitrones: Effects of the Lewis Acid Catalyst. European Journal of Organic Chemistry, 2006, 2006, 3464-3472.	2.4	23
78	Straightforward synthesis of enantiopure 2-aminomethyl and 2-hydroxymethyl pyrrolidines with complete stereocontrol. Tetrahedron Letters, 2005, 46, 1287-1290.	1.4	43
79	Nucleophilic additions of lithiated allylphenylsulfone to nitrones: experimental and theoretical investigations. Tetrahedron, 2005, 61, 3335-3347.	1.9	26
80	An efficient approach to enantiomeric isoxazolidinyl analogues of tiazofurin based on nitrone cycloadditions. Tetrahedron: Asymmetry, 2005, 16, 3865-3876.	1.8	44
81	Stereoselective Allylation Reactions of Imines and Related Compounds. Current Organic Synthesis, 2005, 2, 479-498.	1.3	36
82	Effect of Additional Chiral Ligands in Catalytic Enantioselective Addition of Ketene Silyl Acetals to Nitrones. Letters in Organic Chemistry, 2005, 2, 302-305.	0.5	5
83	Enantioselective 1,3-Dipolar Cycloaddition of Nitrones to Methacrolein Catalyzed by (Î-5-C5Me5)M{(R)-Prophos} Containing Complexes (M = Rh, Ir; (R)-Prophos =) Tj ETQq1 1 0.784314 rgBT /Overla	ock 10 Tf 5	50 342 Td (1,
84	Zinc(II) Triflate-Controlled 1,3-Dipolar Cycloadditions ofC-(2-Thiazolyl)nitrones:Â Application to the Synthesis of a Novel Isoxazolidinyl Analogue of Tiazofurin. Journal of Organic Chemistry, 2005, 70, 8991-9001.	3.2	46
85	Organocatalyzed Asymmetricα-Aminoxylation of Aldehydes and Ketones—An Efficient Access to Enantiomerically Pureα-Hydroxycarbonyl Compounds, Diols, and Even Amino Alcohols. Angewandte Chemie - International Edition, 2004, 43, 2995-2997.	13.8	179
86	Fully Stereoselective Nucleophilic Addition to a Novel Chiral PyrrolineN-Oxide: Total Syntheses of (2S,3R)-3-Hydroxy-3-methylproline and Its (2R)-Epimer. European Journal of Organic Chemistry, 2004, 2004, 776-782.	2.4	42
87	Iterative Organometallic Addition to Chiral Hydroxylated Cyclic Nitrones: Highly Stereoselective Syntheses of î±,î±â€²- and î±,î±-Substituted Hydroxypyrrolidines ChemInform, 2004, 35, no.	0.0	0
88	Organocatalyzed Asymmetric α-Aminoxylation of Aldehydes and Ketones — An Efficient Access to Enantiomerically Pure α-Hydroxycarbonyl Compounds, Diols, and Even Amino Alcohols. ChemInform, 2004, 35, no.	0.0	0
89	Organometallic gold(III) and gold(I) complexes as catalysts for the 1,3-dipolar cycloaddition to nitrones: synthesis of novel gold–nitrone derivatives. Journal of Organometallic Chemistry, 2004, 689, 1788-1795.	1.8	31
90	The Complete Characterization of a Rhodium Lewis Acidâ^'Dipolarophile Complex as an Intermediate for the Enantioselective Catalytic 1,3-Dipolar Cycloaddition ofC,N-Diphenylnitrone to Methacrolein. Journal of the American Chemical Society, 2004, 126, 2716-2717.	13.7	77

#	Article	IF	CITATIONS
91	1,3-Dipolar cycloaddition between N-benzyl-C-glycosyl nitrones and methyl acrylate en route to glycosyl pyrrolidines. Tetrahedron: Asymmetry, 2003, 14, 3731-3743.	1.8	17
92	Stereoselective Synthesis of (â^')-Deacetylanisomycin. European Journal of Organic Chemistry, 2003, 2003, 2877-2881.	2.4	7
93	A Comparative Study of the Stereoselective Addition of Trimethylsilyl Cyanide and Diethylaluminum Cyanide to Chiral Cyclic Nitrones ChemInform, 2003, 34, no.	0.0	Ο
94	A DFT study on the 1,3-dipolar cycloaddition reactions of C-(methoxycarbonyl)-N-methyl nitrone with methyl acrylate and vinyl acetate. Tetrahedron, 2003, 59, 3581-3592.	1.9	69
95	Isoxazolidine analogues of pseudouridine: a new class of modified nucleosides. Tetrahedron, 2003, 59, 4733-4738.	1.9	42
96	A comparative study of the stereoselective addition of trimethylsilyl cyanide and diethylaluminum cyanide to chiral cyclic nitrones. Tetrahedron: Asymmetry, 2003, 14, 367-379.	1.8	45
97	Iterative Organometallic Addition to Chiral Hydroxylated Cyclic Nitrones:  Highly Stereoselective Syntheses of α,αâ€ [~] - and α,α-Substituted Hydroxypyrrolidines. Organic Letters, 2003, 5, 4235-4238.	4.6	77
98	An investigation of the Lewis acid mediated 1,3-dipolar cycloaddition between N-benzyl-C-(2-pyridyl)nitrone and allylic alcohol. Direct entry to isoxazolidinyl C-nucleosidesElectronic supplementary information (ESI) available: optimized geometries (PDB) Tj ETQq0 0 0 rg	gBT ‡Qs verlo	ock 10 Tf 50 4
99	1, 2336. Enantioselective synthesis of 4-hydroxy-d-pyroglutamic acid derivatives by an asymmetric 1,3-dipolar cycloaddition. Tetrahedron: Asymmetry, 2002, 13, 167-172.	1.8	35
100	Experimental and theoretical study of the 1,3-dipolar cycloaddition between d-glyceraldehyde nitrones and acrylates. Diastereoselective approach to 4-hydroxy pyroglutamic acid derivatives. Tetrahedron: Asymmetry, 2002, 13, 173-190.	1.8	46
101	Efficient synthesis of (2R,3S)- and (2S,3S)-2-amino-1,3,4-butanetriols through stereodivergent hydroxymethylation of d-glyceraldehyde nitrones. Tetrahedron Letters, 2002, 43, 459-462.	1.4	20
102	Crystal and Molecular Structures of N-benzyl-C-(2-pyridyl) nitrone and its ZnBr2 Complex. A Study of Their Reactivity. Molecules, 2001, 6, 208-220.	3.8	11
103	Understanding the high diastereofacial discrimination in nucleophilic additions to nitrones: the first ab initio study on the nucleophilic addition reactions of chiral nitrones with Grignard reagents. Tetrahedron, 2001, 57, 8125-8128.	1.9	25
104	1,3-Dipolar Cycloaddition between Hetaryl Nitrones and Methyl Acrylate: Theoretical Study and Application to the Synthesis of Functionalized Pyrrolidines. Heterocycles, 2000, 53, 861.	0.7	19
105	Lewis acid stereocontrolled additions of a silyl ketene acetal to 2,3-di-O-isopropylidene-d-glyceraldehyde nitrones. Synthesis of l-isoxazolidinyl nucleosides. Tetrahedron Letters, 2000, 41, 9239-9243.	1.4	32
106	Stereoselective synthesis of l -isoxazolidinyl thymidine from N -benzyl-1,2-di- O -isopropylidene- d -glyceraldehyde nitrone (BIGN). Tetrahedron: Asymmetry, 2000, 11, 1543-1554.	1.8	23
107	1,3-Dipolar Cycloadditions of N-Benzyl Furfuryl Nitrones with Electron-rich Alkenes. Molecules, 2000, 5, 132-152.	3.8	5
108	Stereodivergent Approaches to the Synthesis of Isoxazolidine Analogues of α-Amino Acid Nucleosides. Total Synthesis of Isoxazolidinyl Deoxypolyoxin C and Uracil Polyoxin Câ€. Journal of Organic Chemistry, 2000, 65, 5575-5589.	3.2	61

#	Article	IF	CITATIONS
109	A General Method for the Vinylation of Nitrones. Synthesis of Allyl Hydroxylamines and Allyl Amines. Synthetic Communications, 2000, 30, 2989-3021.	2.1	23
110	1,3-Dipolar Cycloaddition of Furfuryl Nitrones with Acrylates. A Convenient Approach to Protected 4-Hydroxypyroglutamic Acids. Journal of Organic Chemistry, 2000, 65, 1590-1596.	3.2	49
111	Polyalkoxy Nitrones as Chiral Building Blocks in Asymmetric Synthesis. Molecules, 1999, 4, 169-179.	3.8	17
112	Stereochemistry of α-(tert-butoxycarbonylamino) hydroxylamines: 1H NMR analysis of hydroxylamines derived from 2-pyrrolidinyl nitrones. Tetrahedron: Asymmetry, 1999, 10, 1861-1865.	1.8	8
113	Highly diastereoselective nucleophilic addition of organometallic reagents to 2-pyrrolidinyl nitrones: a semiempirical approach. Tetrahedron: Asymmetry, 1999, 10, 1867-1871.	1.8	22
114	Nucleophilic additions of Grignard reagents to N-benzyl-2,3-O-isopropylidene-D-glyceraldehyde nitrone (BIGN). Synthesis of (2S,3R) and (2S,3S)-3-phenylisoserine. Tetrahedron, 1998, 54, 12301-12322.	1.9	34
115	Asymmetric synthesis of an isoxazolidine nucleoside analog of thymine polyoxin C. Tetrahedron Letters, 1998, 39, 6411-6414.	1.4	19
116	Totally stereocontrolled synthesis of α,β-diamino acids by addition of Grignard reagents to nitrones derived from l -serine. Tetrahedron: Asymmetry, 1998, 9, 629-646.	1.8	62
117	Ready access to enantiopure 5-substituted-3-pyrrolin-2-ones from N-benzyl-2,3-O-isopropylidene-d-glyceraldehyde nitrone (BIGN). Tetrahedron: Asymmetry, 1998, 9, 1759-1769.	1.8	26
118	Synthesis of isoxazolidin-5-ones via stereocontrolled Michael additions of benzylhydroxylamine to l-serine derived α,β-unsaturated esters. Tetrahedron: Asymmetry, 1998, 9, 3945-3949.	1.8	16
119	Modified nucleosides from nitrones: a new and efficient stereoselective approach to isoxazolidinyl thymidine derivatives. Chemical Communications, 1998, , 493-494.	4.1	34
120	Enantiodivergent Approach tod- andl-SecondaryN-Hydroxy-α-amino Acids by UsingN-Benzyl-2,3-O-isopropylidene-d- glyceraldehyde Nitrone as an EffectiveN-Hydroxyglycine Cation Equivalent. Journal of Organic Chemistry, 1998, 63, 2371-2374.	3.2	38
121	Asymmetric Addition Reactions of Lithium (Trimethylsilyl)acetylide with Chiral α-Amino Nitrones. Synthesis of Diastereomerically PureN-Hydroxy-α-amino Acidsâ€. Journal of Organic Chemistry, 1998, 63, 5627-5630.	3.2	37
122	Stereoselective Addition of 2-Furyllithium and 2-Thiazolyllithium to Sugar Nitrones. Synthesis of Carbon-Linked Glycoglycines. Journal of Organic Chemistry, 1997, 62, 5484-5496.	3.2	55
123	Applications of Sugar Nitrones in Synthesis:  The Total Synthesis of (+)-Polyoxin J1. Journal of Organic Chemistry, 1997, 62, 5497-5507.	3.2	68
124	A new entry to glycosylamines. Glycoconjugate Journal, 1997, 14, 497-499.	2.7	7
125	Stereocontrolled addition of Grignard reagents to α-alkoxy nitrones. Synthesis of syn and anti 3-amino-1,2-diols. Tetrahedron: Asymmetry, 1997, 8, 1725-1729.	1.8	36
126	Stereoselective grignard reactions to α-amino nitrones. Synthesis of optically active α-aminohydroxylamines and 1,2-diamines. Tetrahedron: Asymmetry, 1997, 8, 2381-2401.	1.8	45

#	Article	IF	CITATIONS
127	Diastereoselective nucleophilic addition of acetylide to N-benzyl-2, nitrone (BIGN). Stereodivergent synthesis of β-hydroxy-α-(hydroxyamino)- and β-hydroxy-α-amino acids. Tetrahedron: Asymmetry, 1997, 8, 3489-3496.	1.8	48
128	1,3-Dipolar cycloaddition of C-(2-thiazolyl)nitrones to chiral acrylates. Synthesis of enantiopure α-amino-2-alkylthiazoles and 5-formylpyrrolidin-2-ones. Tetrahedron, 1997, 53, 3301-3318.	1.9	39
129	Stereocontrolled synthesis of 2,3-diaminobutanoic acids. Tetrahedron Letters, 1997, 38, 1813-1816.	1.4	33
130	A straightforward synthesis of L-isoserinal. Tetrahedron, 1996, 52, 7045-7052.	1.9	13
131	Enantioselective addition of Grignard reagents to a 2-thiazolyl nitrone. Tetrahedron: Asymmetry, 1996, 7, 667-670.	1.8	22
132	Absolute configuration determination in furfuryl amines and hydroxylamines by circular dichroism. Tetrahedron: Asymmetry, 1996, 7, 1529-1534.	1.8	6
133	Direct vinylation and ethynylation of nitrones. Stereodivergent synthesis of allyl and propargyl amines. Tetrahedron: Asymmetry, 1996, 7, 1887-1890.	1.8	53
134	Stereoselective Addition of Cyanide Reagents to Nitrones Tetrahedron Letters, 1995, 36, 6949-6952.	1.4	0
135	Stereoselective Homologation–Amination of Aldehydes by Addition of Their Nitrones to Câ€2 Metalated Thiazoles—A General Entry to αâ€Amino Aldehydes and Amino Sugars. Chemistry - A European Journal, 1995, 1, 505-520.	3.3	102
136	Determination of the absolute configuration of α-amino-2-alkylthiazoles by circular dichroism. Tetrahedron: Asymmetry, 1995, 6, 2145-2148.	1.8	9
137	Stereoselective addition of cyanide reagents to nitrones. Tetrahedron Letters, 1995, 36, 6949-6952.	1.4	21
138	Total synthesis of (+)-polyoxin J. Journal of the Chemical Society Chemical Communications, 1995, , 2127.	2.0	25
139	Total synthesis of thymine polyoxin C. Tetrahedron Letters, 1994, 35, 9439-9442.	1.4	29
140	Tunable stereoselectivity in the addition of 2-lithiothiazole to L-serinal derived N-benzyl nitroe. Synthesis of C-2 epimer 2,3-diamino-4-hydroxybutanals. Journal of the Chemical Society Chemical Communications, 1994, , 1731.	2.0	21
141	Stereocontrolled addition of 2-lithiothiazole to the nitrone derived from d-glyceraldehyde acetonide. A revision and extension. Tetrahedron Letters, 1993, 34, 5475-5478.	1.4	34
142	Stereocontrol by diethylaluminum chloride in the addition of 2-lithiofuran and N-methyl-2-lithioimidazole to α-alkoxy nitrones. Total synthesis of 5-O-carbamoylpolyoxamic acid Tetrahedron Letters, 1993, 34, 5479-5482.	1.4	48
143	Stereocontrolled Addition of 2-Thiazolyl Organometallic Reagents toC-Galactopyranosylnitrone. A Formal Synthesis of Destomic Acid and Lincosamine. Synlett, 1993, 1993, 78-80.	1.8	38
144	Stereoselective aminohomologation of chiral α-alkoxy aldehydes via thiazole addition to nitrones. Application to the synthesis of N-acetyl-d-mannosamine. Tetrahedron Letters, 1992, 33, 4221-4224.	1.4	36

#	Article	IF	CITATIONS
145	Synthesis of unsymmetrical diheteroarylbenzenes: Benzoazole and quinazoline derivatives. Journal of Heterocyclic Chemistry, 1991, 28, 359-363.	2.6	20
146	Diheterocyclic compounds from dithiocarbamates and derivatives thereof. I . 2,2′â€(arylenediamino)bisbenzoazoles, 2,2′â€(arylenediamino)bis(imidazopyridines) and 8,8′â€(arylenediamino)bispurines. Journal of Heterocyclic Chemistry, 1990, 27, 221-226.	2.6	9
147	Diheterocyclic compounds from dithiocarbamates and derivatives thereof. II . 2,2′â€Diaminoâ€6,6′â€bibenzoazoles. Journal of Heterocyclic Chemistry, 1990, 27, 321-326.	2.6	13
148	Diheterocyclic compounds from dithiocarbamates and derivatives thereof. III. 3,3′â€arylenebis(2,4â€dioxoâ€1,2,3,4â€ŧetrahydroquinazolines). Journal of Heterocyclic Chemistry, 1990, 27, 1341-1344.	2.6	10
149	Diheterocyclic compounds from dithiocarbamates and derivatives thereof.Ⅳ. 3,3′-arylenebis-(4-oxo-2-thioxo-1,2,3,4-tetrahydroquinazolines). Journal of Heterocyclic Chemistry, 1990, 27, 1345-1349.	2.6	7
150	Diheterocyclic compounds from dithiocarbamates and derivatives thereof. V . 4,4′â€dioxoâ€2,2′â€dithioxo(dioxo)â€6,6′â€biquinazolines. Journal of Heterocyclic Chemistry, 1990, 27,	1351-135	54.
151	A New Version of Hugershoff Synthesis. Bulletin Des Sociétés Chimiques Belges, 1987, 96, 797-799.	0.0	4