Magnus Norgren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the formation and stability of cellulose-based emulsions in alkaline systems: Effect of the solvent quality. Carbohydrate Polymers, 2022, 286, 119257.	5.1	2
2	Cellulose-stabilized oil-in-water emulsions: Structural features, microrheology, and stability. Carbohydrate Polymers, 2021, 252, 117092.	5.1	26
3	Hydrophobic interactions control the self-assembly of DNA and cellulose. Quarterly Reviews of Biophysics, 2021, 54, e3.	2.4	56
4	On the Development of All-Cellulose Capsules by Vesicle-Templated Layer-by-Layer Assembly. Polymers, 2021, 13, 589.	2.0	8
5	Lignin enhances cellulose dissolution in cold alkali. Carbohydrate Polymers, 2021, 274, 118661.	5.1	11
6	Levulinic acid: A novel sustainable solvent for lignin dissolution. International Journal of Biological Macromolecules, 2020, 164, 3454-3461.	3.6	22
7	Celluloseâ€Based Fully Green Triboelectric Nanogenerators with Output Power Density of 300 W m ^{â^2} . Advanced Materials, 2020, 32, e2002824.	11.1	93
8	Tuning the properties of regenerated cellulose: Effects of polarity and water solubility of the coagulation medium. Carbohydrate Polymers, 2020, 236, 116068.	5.1	20
9	Simple One Pot Preparation of Chemical Hydrogels from Cellulose Dissolved in Cold LiOH/Urea. Polymers, 2020, 12, 373.	2.0	20
10	Electronic performance of printed PEDOT:PSS lines correlated to the physical and chemical properties of coated inkjet papers. RSC Advances, 2019, 9, 23925-23938.	1.7	3
11	Interfacial activity and emulsion stabilization of dissolved cellulose. Journal of Molecular Liquids, 2019, 292, 111325.	2.3	19
12	Brief Overview on Bio-Based Adhesives and Sealants. Polymers, 2019, 11, 1685.	2.0	49
13	Emulsion Formation and Stabilization by Biomolecules: The Leading Role of Cellulose. Polymers, 2019, 11, 1570.	2.0	111
14	pH-responsive cellulose–chitosan nanocomposite films with slow release of chitosan. Cellulose, 2019, 26, 3763-3776.	2.4	41
15	On chelating surfactants: Molecular perspectives and application prospects. Journal of Molecular Liquids, 2019, 278, 688-705.	2.3	46
16	Copper Nanoparticles on Controlled Pore Glass and TEMPO for the Aerobic Oxidation of Alcohols. ChemNanoMat, 2018, 4, 71-75.	1.5	11
17	Cellulose binders for electric double-layer capacitor electrodes: The influence of cellulose quality on electrical properties. Materials and Design, 2018, 141, 342-349.	3.3	39
18	Electrochemical recovery of copper complexed by DTPA and C ₁₂ â€DTPA from aqueous solution using a membrane cell. Journal of Chemical Technology and Biotechnology, 2018, 93, 1421-1431.	1.6	11

#	Article	IF	CITATIONS
19	Controlled Synthesis of Cu and Cu2O NPs and Incorporation of Octahedral Cu2O NPs in Cellulose II Films. Nanomaterials, 2018, 8, 238.	1.9	9
20	The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Physical Chemistry Chemical Physics, 2017, 19, 23704-23718.	1.3	172
21	Removal of Cd ²⁺ , Zn ²⁺ , and Sr ²⁺ by Ion Flotation, Using a Surface-Active Derivative of DTPA (C ₁₂ -DTPA). Industrial & Engineering Chemistry Research, 2017, 56, 10605-10614.	1.8	30
22	Influences of the operational variables on electrochemical treatment of chelated Cu(<scp>II</scp>) in alkaline solutions using a membrane cell. Journal of Chemical Technology and Biotechnology, 2017, 92, 1436-1445.	1.6	12
23	One-pot synthesis of cellulose-templated copper nanoparticles with antibacterial properties. Materials Letters, 2017, 187, 170-172.	1.3	49
24	Exfoliated MoS2 in Water without Additives. PLoS ONE, 2016, 11, e0154522.	1.1	98
25	Spherical nanocomposite particles prepared from mixed cellulose–chitosan solutions. Cellulose, 2016, 23, 3105-3115.	2.4	40
26	Molecular Organization of an Adsorbed Layer: A Zwitterionic, pH-Sensitive Surfactant at the Air/Water Interface. Langmuir, 2016, 32, 10936-10945.	1.6	11
27	Interactions in Mixed Micellar Systems of an Amphoteric Chelating Surfactant and Ionic Surfactants. Langmuir, 2014, 30, 1250-1256.	1.6	23
28	Headgroup Interactions and Ion Flotation Efficiency in Mixtures of a Chelating Surfactant, Different Foaming Agents, and Divalent Metal Ions. Langmuir, 2014, 30, 6331-6338.	1.6	20
29	Lignin: Recent advances and emerging applications. Current Opinion in Colloid and Interface Science, 2014, 19, 409-416.	3.4	376
30	Metal Ion Coordination, Conditional Stability Constants, and Solution Behavior of Chelating Surfactant Metal Complexes. Langmuir, 2014, 30, 4605-4612.	1.6	29
31	Anomalies in Solution Behavior of an Alkyl Aminopolycarboxylic Chelating Surfactant. Langmuir, 2013, 29, 13708-13716.	1.6	13
32	Brightness development of a hydrogen peroxide bleached spruce TMP. Comparisons of pre-treatments with DTPA and a separable chelating surfactant. Nordic Pulp and Paper Research Journal, 2012, 27, 50-55.	0.3	9
33	Removal of lipophilic extractives and manganese ions from Spruce TMP waters in a customized flotation cell. BioResources, 2012, 7, .	0.5	10
34	Cellulose as a Natural Emulsifier: From Nanocelluloses to Macromolecules. , 0, , .		2