
Liu-Lin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580175/publications.pdf Version: 2024-02-01

Ι.......ΥΑΝΟ

#	Article	IF	CITATIONS
1	Spotted seal Phoca largha underwater vocalisations in relation to ambient noise. Marine Ecology - Progress Series, 2022, 683, 209-220.	1.9	4
2	Optically reconfigurable shape memory metallo-polymer mediated by a carbolong complex and radically exchangeable covalent bond. Polymer Chemistry, 2022, 13, 1844-1851.	3.9	8
3	Catassemblers Mediate Feedback Loops to Regulate the Complex Molecular Assembly Networks. , 2022, ,		0
4	Supramolecular copolymerization through self-correction of non-polymerizable transient intermediates. Chemical Science, 2022, 13, 7796-7804.	7.4	1
5	Conjugated polymers based on metalla-aromatic building blocks. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	12
6	Revealing unconventional host–guest complexation at nanostructured interface by surface-enhanced Raman spectroscopy. Light: Science and Applications, 2021, 10, 85.	16.6	24
7	Quantification and Prediction of Imine Formation Kinetics in Aqueous Solution by Microfluidic NMR Spectroscopy. Chemistry - A European Journal, 2021, 27, 9508-9513.	3.3	4
8	Nanographene–Osmapentalyne Complexes as a Cathode Interlayer in Organic Solar Cells Enhance Efficiency over 18%. Advanced Materials, 2021, 33, e2101279.	21.0	129
9	Tough self-reporting elastomer with NIR induced shape memory effect. Giant, 2021, 8, 100069.	5.1	10
10	Hollow and highly diastereoselective face-rotating polyhedra constructed through rationally engineered facial units. Chemical Science, 2021, 12, 11730-11734.	7.4	6
11	Truncated Face-Rotating Polyhedra Constructed from Pentagonal Pentaphenylpyrrole through Graph Theory. Journal of the American Chemical Society, 2020, 142, 16223-16228.	13.7	33
12	Addition of alkynes and osmium carbynes towards functionalized dπ–pπ conjugated systems. Nature Communications, 2020, 11, 4651.	12.8	41
13	Dynamic Polymer Network System Mediated by Radically Exchangeable Covalent Bond and Carbolong Complex. ACS Macro Letters, 2020, 9, 344-349.	4.8	30
14	Compartmentalized supramolecular hydrogels based on viral nanocages towards sophisticated cargo administration. Nanoscale, 2018, 10, 4123-4129.	5.6	14
15	Templated Formation of Luminescent Virus-like Particles by Tailor-Made Pt(II) Amphiphiles. Journal of the American Chemical Society, 2018, 140, 2355-2362.	13.7	42
16	Compartmentalized Thin Films with Customized Functionality via Interfacial Crossâ€linking of Protein Cages. Advanced Functional Materials, 2018, 28, 1801574.	14.9	13
17	Immobilization of catalytic virus-like particles in a flow reactor. Chemical Communications, 2017, 53, 7632-7634.	4.1	20
18	Construction of core-shell hybrid nanoparticles templated by virus-like particles. RSC Advances, 2017, 7, 56328-56334.	3.6	6

LIU-LIN YANG

#	Article	IF	CITATIONS
19	Selfâ€Assembly of Proteins: Towards Supramolecular Materials. Chemistry - A European Journal, 2016, 22, 15570-15582.	3.3	54
20	Supramolecular Self-Assembly Induced Adjustable Multiple Gating States of Nanofluidic Diodes. Journal of the American Chemical Society, 2016, 138, 16372-16379.	13.7	82
21	Controllable Supramolecular Polymerization through Host–Guest Interaction and Photochemistry. ACS Macro Letters, 2015, 4, 611-615.	4.8	53
22	Reactive oxygen species (ROS)-responsive tellurium-containing hyperbranched polymer. Polymer Chemistry, 2015, 6, 2817-2821.	3.9	60
23	Self-assembling 1D core/shell microrods by the introduction of additives: a one-pot and shell-tunable method. Chemical Science, 2015, 6, 4907-4911.	7.4	8
24	Supramolecular Polymers: Historical Development, Preparation, Characterization, and Functions. Chemical Reviews, 2015, 115, 7196-7239.	47.7	1,065
25	Supramolecular polymers synthesized by thiol–ene click polymerization from supramonomers. Polymer Chemistry, 2015, 6, 369-372.	3.9	25
26	Amphiphilic diselenide-containing supramolecular polymers. Polymer Chemistry, 2015, 6, 681-685.	3.9	37
27	Supramolecular Polymerization Promoted and Controlled through Selfâ€Sorting. Angewandte Chemie - International Edition, 2014, 53, 5351-5355.	13.8	200
28	Supramolecular polymer fabricated by click polymerization from supramonomer. Polymer Chemistry, 2014, 5, 323-326.	3.9	74
29	Supramolecular polymerization of supramonomers: a way for fabricating supramolecular polymers. Polymer Chemistry, 2014, 5, 5895-5899.	3.9	32
30	Cucurbit[7]uril as a "protective agent― controlling photochemistry and detecting 1-adamantanamine. Chemical Communications, 2013, 49, 3905.	4.1	14
31	Rational Adjustment of Multicolor Emissions by Cucurbiturils-Based Host–Guest Chemistry and Photochemistry. Langmuir, 2013, 29, 12909-12914.	3.5	48
32	Supramolecular Glycolipid Based on Host-Enhanced Charge Transfer Interaction. Langmuir, 2013, 29, 12375-12379.	3.5	37
33	Water-soluble supramolecular polymers fabricated through specific interactions between cucurbit[8]uril and a tripeptide of Phe-Gly-Gly. Polymer Chemistry, 2013, 4, 5378.	3.9	52
34	Supra-amphiphiles formed by complexation of azulene-based amphiphiles and pyrene in aqueous solution: from cylindrical micelles to disklike nanosheets. Chemical Communications, 2013, 49, 1808.	4.1	25
35	Preparation, Characterization and Osteoblastic Activity of Chitosan/Polycaprolactone/ <i>In Situ</i> Hydroxyapatite Scaffolds. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1755-1770.	3.5	11
36	Synthesis and liquid crystallinity of dendronized carbohydrate liquid crystal. Carbohydrate Research, 2012, 347, 40-46.	2.3	4

LIU-LIN YANG

#	Article	IF	CITATIONS
37	Dendronized Carbohydrates â…—Molecular Design and Synthesis. Acta Chimica Sinica, 2012, 70, 21.	1.4	4
38	Dendronized Carbohydratesâ…j—Liquid Crystallinity Study. Acta Chimica Sinica, 2012, 70, 27.	1.4	0
39	è‹"醚型æ'æžåŒ–碳水化å•̂物的å•̂æˆë,Žæ¶²æ™¶æ€§. Scientia Sinica Chimica, 2012, 42, 1161-1171.	0.4	Ο
40	Crystal morphology study of N,N′-diacetylchitobiose by molecular dynamics simulation. Carbohydrate Research, 2011, 346, 2457-2462.	2.3	23
41	Measurement of critical concentration for mesophase formation of chitosan derivatives in both aqueous and organic solutions. Polymer International, 2006, 55, 1444-1449.	3.1	25