
Elena M Vazey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580168/publications.pdf Version: 2024-02-01

FLENA M VAZEV

#	Article	IF	CITATIONS
1	Individual differences in behavioral flexibility predict future volitional ethanol consumption in mice. Alcohol, 2022, 101, 37-43.	1.7	3
2	Assessing negative affect in mice during abstinence from alcohol drinking: Limitations and future challenges. Alcohol, 2022, 100, 41-56.	1.7	23
3	DREADD-mediated activation of the locus coeruleus restores descending nociceptive inhibition after traumatic brain injury in rats Journal of Neurotrauma, 2022, , .	3.4	1
4	Inhibitory designer receptors aggravate memory loss in a mouse model of down syndrome. Neurobiology of Disease, 2020, 134, 104616.	4.4	9
5	A brainstem-central amygdala circuit underlies defensive responses to learned threats. Molecular Psychiatry, 2020, 25, 640-654.	7.9	38
6	Noradrenergic tone mediates marble burying behavior after chronic stress and ethanol. Psychopharmacology, 2020, 237, 3021-3031.	3.1	22
7	DREADD-mediated modulation of locus coeruleus inputs to mPFC improves strategy set-shifting. Neurobiology of Learning and Memory, 2019, 161, 1-11.	1.9	33
8	Central Noradrenergic Interactions with Alcohol and Regulation of Alcohol-Related Behaviors. Handbook of Experimental Pharmacology, 2018, 248, 239-260.	1.8	22
9	Phasic locus coeruleus activity regulates cortical encoding of salience information. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9439-E9448.	7.1	160
10	Abnormal Locus Coeruleus Sleep Activity Alters Sleep Signatures of Memory Consolidation and Impairs Place Cell Stability and Spatial Memory. Current Biology, 2018, 28, 3599-3609.e4.	3.9	95
11	Increased locus coeruleus tonic activity causes disengagement from a patch-foraging task. Cognitive, Affective and Behavioral Neuroscience, 2017, 17, 1073-1083.	2.0	73
12	Stress Facilitates the Development of Cognitive Dysfunction After Chronic Ethanol Exposure. Alcoholism: Clinical and Experimental Research, 2017, 41, 1574-1583.	2.4	28
13	Noradrenergic Regulation of Central Amygdala in Aversive Pavlovian-to-Instrumental Transfer. ENeuro, 2017, 4, ENEURO.0224-17.2017.	1.9	18
14	New Pharmacological Approaches to Treating Non-Motor Symptoms of Parkinson's Disease. Current Pharmacology Reports, 2016, 2, 253-261.	3.0	13
15	Designer Receptors Enhance Memory in a Mouse Model of Down Syndrome. Journal of Neuroscience, 2015, 35, 1343-1353.	3.6	61
16	Histologic validation of locus coeruleus MRI contrast in post-mortem tissue. NeuroImage, 2015, 113, 235-245.	4.2	161
17	Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3859-3864.	7.1	239
18	Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nature Neuroscience, 2014, 17, 577-585.	14.8	314

Elena M Vazey

#	Article	IF	CITATIONS
19	Designer receptors: therapeutic adjuncts to cell replacement therapy in Parkinson's disease. Journal of Clinical Investigation, 2014, 124, 2858-2860.	8.2	5
20	Stem cellâ€based therapy for Huntington's disease. Journal of Cellular Biochemistry, 2013, 114, 754-763.	2.6	43
21	New tricks for old dogmas: Optogenetic and designer receptor insights for Parkinson's disease. Brain Research, 2013, 1511, 153-163.	2.2	24
22	The emerging role of norepinephrine in cognitive dysfunctions of Parkinson's disease. Frontiers in Behavioral Neuroscience, 2012, 6, 48.	2.0	100
23	Use of vivo-morpholinos for control of protein expression in the adult rat brain. Journal of Neuroscience Methods, 2012, 203, 354-360.	2.5	46
24	Norepinephrine in Neurodegeneration: A Coerulean Target. , 2012, 02, .		1
25	Comparison of Transplant Efficiency between Spontaneously Derived and Noggin-Primed Human Embryonic Stem Cell Neural Precursors in the Quinolinic Acid Rat Model of Huntington's Disease. Cell Transplantation, 2010, 19, 1055-1062.	2.5	38
26	Differential fate and functional outcome of lithium chloride primed adult neural progenitor cell transplants in a rat model of Huntington disease. Stem Cell Research and Therapy, 2010, 1, 41.	5.5	12
27	In vitro priming to direct neuronal fate in adult neural progenitor cells. Experimental Neurology, 2009, 216, 520-524.	4.1	9
28	Temporal profile of subventricular zone progenitor cell migration following quinolinic acid–induced striatal cell loss. Neuroscience, 2007, 146, 1704-1718.	2.3	44
29	Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease. Experimental Neurology, 2006, 199, 384-396.	4.1	98