
Barry V L Potter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580154/publications.pdf Version: 2024-02-01

RADDY VI DOTTED

#	Article	IF	CITATIONS
1	cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature, 1993, 365, 456-459.	13.7	343
2	Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature, 1999, 398, 70-73.	13.7	316
3	Chemistry of Inositol Lipid Mediated Cellular Signaling. Angewandte Chemie International Edition in English, 1995, 34, 1933-1972.	4.4	274
4	Phase I Study of STX 64 (667 Coumate) in Breast Cancer Patients: The First Study of a Steroid Sulfatase Inhibitor. Clinical Cancer Research, 2006, 12, 1585-1592.	3.2	225
5	Estrone sulfamates: potent inhibitors of estrone sulfatase with therapeutic potential. Journal of Medicinal Chemistry, 1994, 37, 219-221.	2.9	215
6	Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nature Communications, 2016, 7, 11262.	5.8	172
7	Inactivation of Steroid Sulfatase by an Active Site-Directed Inhibitor, Estrone-3-O-Sulfamate. Biochemistry, 1995, 34, 11508-11514.	1.2	167
8	Steroidal and Nonsteroidal Sulfamates as Potent Inhibitors of Steroid Sulfatase. Journal of Medicinal Chemistry, 1998, 41, 1068-1083.	2.9	146
9	The "Other―Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in) Tj E	ETQq1 1 0	.784314 rg <mark>8</mark> 1 141
10	The structural biology of oestrogen metabolism. Journal of Steroid Biochemistry and Molecular Biology, 2013, 137, 27-49.	1.2	129
11	Inhibition of the Phosphatidylinositol 3-Kinase/Akt Pathway by Inositol Pentakisphosphate Results in Antiangiogenic and Antitumor Effects. Cancer Research, 2005, 65, 8339-8349.	0.4	126
12	Determination of <i>neo</i> - and <scp>d</scp> - <i>chiro</i> -Inositol Hexakisphosphate in Soils by Solution ³¹ P NMR Spectroscopy. Environmental Science & Technology, 2012, 46, 4994-5002.	4.6	119
13	An autoradiographic study of the distribution of binding sites for the novel α7-selective nicotinic radioligand [3H]-methyllycaconitine in the mouse brain. European Journal of Neuroscience, 1999, 11, 2689-2696.	1.2	110
14	Induction of Hippocampal LTD Requires Nitric-Oxide-Stimulated PKG Activity and Ca ²⁺ Release From Cyclic ADP-Ribose-Sensitive Stores. Journal of Neurophysiology, 1999, 82, 1569-1576.	0.9	106
15	NAADP-mediated Ca ²⁺ signaling via type 1 ryanodine receptor in T cells revealed by a synthetic NAADP antagonist. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10678-10683.	3.3	100
16	InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase. Nature, 2000, 408, 735-740.	13.7	99
17	17βâ€hydroxysteroid dehydrogenase Type 1, and not Type 12, is a target for endocrine therapy of hormoneâ€dependent breast cancer. International Journal of Cancer, 2008, 122, 1931-1940.	2.3	99
18	2-Substituted Estradiol Bis-sulfamates, Multitargeted Antitumor Agents:Â Synthesis, In Vitro SAR, Protein Crystallography, and In Vivo Activityâ€. Journal of Medicinal Chemistry, 2006, 49, 7683-7696.	2.9	98

#	Article	IF	CITATIONS
19	Steroid Sulfatase: A New Target for the Endocrine Therapy of Breast Cancer. Oncologist, 2007, 12, 370-374.	1.9	92
20	Quinazolinone-Based Anticancer Agents: Synthesis, Antiproliferative SAR, Antitubulin Activity, and Tubulin Co-crystal Structure. Journal of Medicinal Chemistry, 2018, 61, 1031-1044.	2.9	91
21	Inositol pentakisphosphate promotes apoptosis through the PI 3-K/Akt pathway. Oncogene, 2004, 23, 1754-1765.	2.6	89
22	Chiral Aromatase and Dual Aromataseâ^'Steroid Sulfatase Inhibitors from the Letrozole Template: Synthesis, Absolute Configuration, and In Vitro Activity. Journal of Medicinal Chemistry, 2008, 51, 4226-4238.	2.9	80
23	E-Ring Modified Steroids as Novel Potent Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1. Journal of Medicinal Chemistry, 2005, 48, 5749-5770.	2.9	78
24	First Dual Aromatase-Steroid Sulfatase Inhibitors. Journal of Medicinal Chemistry, 2003, 46, 3193-3196.	2.9	76
25	Highly Potent First Examples of Dual Aromataseâ^'Steroid Sulfatase Inhibitors based on a Biphenyl Template. Journal of Medicinal Chemistry, 2010, 53, 2155-2170.	2.9	76
26	Dual Aromataseâ^'Steroid Sulfatase Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 3540-3560.	2.9	75
27	Discovery and Development of the Aryl <i>O</i> -Sulfamate Pharmacophore for Oncology and Women's Health. Journal of Medicinal Chemistry, 2015, 58, 7634-7658.	2.9	72
28	Disaccharide Polyphosphates Based upon Adenophostin A Activate Hepatic d-myo-Inositol 1,4,5-Trisphosphate Receptors. Biochemistry, 1997, 36, 12780-12790.	1.2	71
29	Modification of Estrone at the 6, 16, and 17 Positions:  Novel Potent Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1. Journal of Medicinal Chemistry, 2006, 49, 1325-1345.	2.9	70
30	Active Site Directed Inhibition of Estrone Sulfatase by Nonsteroidal Coumarin Sulfamates. Journal of Medicinal Chemistry, 1996, 39, 1349-1351.	2.9	69
31	Synthetic partial agonists reveal key steps in IP3 receptor activation. Nature Chemical Biology, 2009, 5, 631-639.	3.9	69
32	A-Ring-Substituted Estrogen-3-O-sulfamates:Â Potent Multitargeted Anticancer Agents. Journal of Medicinal Chemistry, 2005, 48, 5243-5256.	2.9	68
33	Human Genome-Wide RNAi Screen Identifies an Essential Role for Inositol Pyrophosphates in Type-I Interferon Response. PLoS Pathogens, 2014, 10, e1003981.	2.1	68
34	2′-Deoxyadenosine 5′-diphosphoribose is an endogenous TRPM2 superagonist. Nature Chemical Biology, 2017, 13, 1036-1044.	3.9	66
35	Structure–Activity Relationship of Adenosine 5′-diphosphoribose at the Transient Receptor Potential Melastatin 2 (TRPM2) Channel: Rational Design of Antagonists. Journal of Medicinal Chemistry, 2013, 56, 10079-10102.	2.9	63
36	In vivo Efficacy of STX213, A Second-Generation Steroid Sulfatase Inhibitor, for Hormone-Dependent Breast Cancer Therapy. Clinical Cancer Research, 2006, 12, 5543-5549.	3.2	62

#	Article	IF	CITATIONS
37	Synthesis of Selective Non-Ca2+ Mobilizing Inhibitors of D-myo-Inositol 1,4,5-Trisphosphate 5-Phosphatase. Journal of Medicinal Chemistry, 1994, 37, 907-912.	2.9	61
38	Inhibition ofin vitro angiogenesis by 2-methoxy- and 2-ethyl-estrogen sulfamates. International Journal of Cancer, 2004, 109, 533-540.	2.3	60
39	D-Ring Modified Estrone Derivatives as Novel Potent Inhibitors of Steroid Sulfatase. Bioorganic and Medicinal Chemistry, 2003, 11, 1685-1700.	1.4	59
40	Nicotinic acid adenine dinucleotide phosphate-mediated calcium signalling in effector T cells regulates autoimmunity of the central nervous system. Brain, 2010, 133, 1930-1943.	3.7	59
41	Structure–Activity Relationship for the Firstâ€inâ€Class Clinical Steroid Sulfatase Inhibitor Irosustat (STX64, BN83495). ChemMedChem, 2011, 6, 2019-2034.	1.6	57
42	Roles for Adenosine Ribose Hydroxyl Groups in Cyclic Adenosine 5â€~-Diphosphate Ribose-Mediated Ca2+ Release. Biochemistry, 1997, 36, 9509-9517.	1.2	56
43	Synthetic Inositol Phosphate Analogs Reveal that PPIP5K2 Has a Surface-Mounted Substrate Capture Site that Is a Target for Drug Discovery. Chemistry and Biology, 2014, 21, 689-699.	6.2	56
44	Medicinal Chemistry and Pharmacology of Cyclic ADP-Ribose. Current Molecular Medicine, 2004, 4, 303-311.	0.6	56
45	Structural Determinants of Adenophostin A Activity at Inositol Trisphosphate Receptors. Molecular Pharmacology, 2001, 59, 1206-1215.	1.0	55
46	Crystal structure of human carbonic anhydrase II at 1.95ÂÃ resolution in complex with 667-coumate, a novel anti-cancer agent. Biochemical Journal, 2005, 385, 715-720.	1.7	55
47	SULFATION PATHWAYS: Steroid sulphatase inhibition via aryl sulphamates: clinical progress, mechanism and future prospects. Journal of Molecular Endocrinology, 2018, 61, T233-T252.	1.1	55
48	Novel and Potent 17β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 2759-2762.	2.9	53
49	Structural Basis for Enzymatic Evolution from a Dedicated ADP-ribosyl Cyclase to a Multifunctional NAD Hydrolase. Journal of Biological Chemistry, 2009, 284, 27637-27645.	1.6	53
50	Development of steroid sulfatase inhibitors. Molecular and Cellular Endocrinology, 2011, 340, 175-185.	1.6	53
51	3,17-Disubstituted 2-Alkylestra-1,3,5(10)-trien-3-ol Derivatives:  Synthesis, In Vitro and In Vivo Anticancer Activity. Journal of Medicinal Chemistry, 2007, 50, 4431-4443.	2.9	50
52	Structure–Activity Relationships of C-17 Cyano-Substituted Estratrienes as Anticancer Agents. Journal of Medicinal Chemistry, 2008, 51, 1295-1308.	2.9	50
53	The enzymes of human diphosphoinositol polyphosphate metabolism. FEBS Journal, 2014, 281, 14-33.	2.2	49
54	Inhibition of MCF-7 breast cancer cell proliferation and in vivo steroid sulphatase activity by 2-methoxyoestradiol-bis-sulphamate. Journal of Steroid Biochemistry and Molecular Biology, 2003, 84, 351-358.	1.2	48

#	Article	IF	CITATIONS
55	Rapid Synthetic Route toward Structurally Modified Derivatives of Cyclic Adenosine 5â€~-Diphosphate Ribose. Journal of Organic Chemistry, 2005, 70, 4810-4819.	1.7	48
56	Selective recognition of inositol phosphates by subtypes of the inositol trisphosphate receptor. Biochemical Journal, 2001, 355, 59-69.	1.7	46
57	Visualizing context-dependent calcium signaling in encephalitogenic T cells in vivo by two-photon microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6381-E6389.	3.3	46
58	Modification at C2 of myo-inositol 1,4,5-trisphosphate produces inositol trisphosphates and tetrakisphosphates with potent biological activities. FEBS Journal, 1994, 223, 115-124.	0.2	44
59	Synthesis and evaluation of analogues of estrone-3-O-sulfamate as potent steroid sulfatase inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 2506-2519.	1.4	43
60	Die Chemie der Inositlipidâ€vermittelten zelluläen Signalübertragung. Angewandte Chemie, 1995, 107, 2085-2125.	1.6	42
61	Synthesis, in vitro and in vivo activity of benzophenone-based inhibitors of steroid sulfatase. Bioorganic and Medicinal Chemistry, 2004, 12, 2759-2772.	1.4	42
62	First Crystal Structures of Human Carbonic Anhydrase II in Complex with Dual Aromataseâ^'Steroid Sulfatase Inhibitorsâ€,‡. Biochemistry, 2005, 44, 6858-6866.	1.2	42
63	STX140 Is Efficacious <i>In vitro</i> and <i>In vivo</i> in Taxane-Resistant Breast Carcinoma Cells. Clinical Cancer Research, 2008, 14, 597-606.	3.2	42
64	Novel Hydrolysis-Resistant Analogues of Cyclic ADP-ribose: Modification of the "Northern―Ribose and Calcium Release Activityâ€. Biochemistry, 2002, 41, 6744-6751.	1.2	41
65	Docking studies of sulphamate inhibitors of estrone sulphatase in human carbonic anhydrase II. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 863-865.	1.0	41
66	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-mediated Calcium Signaling and Arrhythmias in the Heart Evoked by β-Adrenergic Stimulation. Journal of Biological Chemistry, 2013, 288, 16017-16030.	1.6	41
67	Novel D-ring modified steroid derivatives as potent, non-estrogenic, steroid sulfatase inhibitors with in vivo activity. Journal of Steroid Biochemistry and Molecular Biology, 2003, 84, 343-349.	1.2	40
68	Synthesis and Ca2+-Mobilizing Activity of Purine-Modified Mimics of Adenophostin A:Â A Model for the Adenophostinâ^'Ins(1,4,5)P3Receptor Interaction. Journal of Medicinal Chemistry, 2003, 46, 4860-4871.	2.9	40
69	2-Difluoromethyloestrone 3-O-sulphamate, a highly potent steroid sulphatase inhibitor. Biochemical and Biophysical Research Communications, 2004, 317, 169-175.	1.0	40
70	An ATP-responsive metabolic cassette comprised of inositol tris/tetrakisphosphate kinase 1 (ITPK1) and inositol pentakisphosphate 2-kinase (IPK1) buffers diphosphosphoinositol phosphate levels. Biochemical Journal, 2020, 477, 2621-2638.	1.7	40
71	Rapid Synthesis of the Enantiomers ofmyo-Inositol-1,3,4,5-tetrakisphosphate by Direct Chiral Desymmetrization ofmyo-Inositol Orthoformate. Angewandte Chemie International Edition in English, 1997, 36, 1472-1474.	4.4	39
72	Anticancer steroid sulfatase inhibitors: synthesis of a potent fluorinated second-generation agent, <i>in vitro</i> and <i>in vivo</i> activities, molecular modeling, and protein crystallography. Molecular Cancer Therapeutics, 2008, 7, 2435-2444.	1.9	39

#	Article	IF	CITATIONS
73	The Use of Steroid Sulfatase Inhibitors as a Novel Therapeutic Strategy Against Hormone-Dependent Endometrial Cancer. Endocrinology, 2008, 149, 4035-4042.	1.4	39
74	Synthesis, Antitubulin, and Antiproliferative SAR of Analogues of 2-Methoxyestradiol-3,17- <i>O</i> , <i>O</i> -bis-sulfamate. Journal of Medicinal Chemistry, 2010, 53, 2942-2951.	2.9	39
75	A New Therapeutic Strategy against Hormone-Dependent Breast Cancer: The Preclinical Development of a Dual Aromatase and Sulfatase Inhibitor. Clinical Cancer Research, 2008, 14, 6469-6477.	3.2	37
76	The Development of Steroid Sulfatase Inhibitors for Hormoneâ€Dependent Cancer Therapy. Annals of the New York Academy of Sciences, 2009, 1155, 80-87.	1.8	37
77	Binding of Inositol 1,4,5-trisphosphate (IP ₃) and Adenophostin A to the N-Terminal region of the IP ₃ Receptor: Thermodynamic Analysis Using Fluorescence Polarization with a Novel IP ₃ Receptor Ligand. Molecular Pharmacology, 2010, 77, 995-1004.	1.0	37
78	Estrogen O-sulfamates and their analogues: Clinical steroid sulfatase inhibitors with broad potential. Journal of Steroid Biochemistry and Molecular Biology, 2015, 153, 160-169.	1.2	37
79	Focused Libraries of 16-Substituted Estrone Derivatives and Modified E-Ring Steroids: Inhibitors of 17ß-Hydroxysteroid Dehydrogenase Typeâ€1. ChemMedChem, 2006, 1, 464-481.	1.6	36
80	Novel inhibitors of 17β-hydroxysteroid dehydrogenase type 1: Templates for design. Bioorganic and Medicinal Chemistry, 2008, 16, 4438-4456.	1.4	36
81	2-Alkylsulfanyl estrogen derivatives: synthesis of a novel class of multi-targeted anti-tumour agents. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3135-3138.	1.0	35
82	A Synthetic Polyphosphoinositide Headgroup Surrogate in Complex with SHIP2 Provides a Rationale for Drug Discovery. ACS Chemical Biology, 2012, 7, 822-828.	1.6	35
83	SHIP2: Structure, Function and Inhibition. ChemBioChem, 2017, 18, 233-247.	1.3	35
84	Structural Determinants for N1/N7 Cyclization of Nicotinamide Hypoxanthine 5â€~-Dinucleotide (NHD+) Derivatives by ADP-Ribosyl Cyclase fromAplysiacalifornica:Â Ca2+-Mobilizing Activity of 8-Substituted Cyclic Inosine 5â€~-Diphosphoribose Analogues in T-Lymphocytes. Journal of Medicinal Chemistry, 2006, 49, 5162-5176.	2.9	34
85	Biphenyl 2,3′,4,5′,6â€pentakisphosphate, a novel inositol polyphosphate surrogate, modulates Ca 2+ responses in rat hepatocytes. FASEB Journal, 2007, 21, 1481-1491.	0.2	34
86	Efficacy of three potent steroid sulfatase inhibitors: pre-clinical investigations for their use in the treatment of hormone-dependent breast cancer. Breast Cancer Research and Treatment, 2008, 111, 129-138.	1.1	34
87	Hybrid Dual Aromatase-Steroid Sulfatase Inhibitors with Exquisite Picomolar Inhibitory Activity. ACS Medicinal Chemistry Letters, 2011, 2, 243-247.	1.3	34
88	First enzymatic synthesis of an N1-cyclised cADPR (cyclic-ADP ribose) analogue with a hypoxanthine partial structure: discovery of a membrane permeant cADPR agonist. Chemical Communications, 2003, , 1944.	2.2	33
89	Rapid functional assays of recombinant IP3 receptors. Cell Calcium, 2005, 38, 45-51.	1.1	33
90	Effects of C-17 heterocyclic substituents on the anticancer activity of 2-ethylestra-1,3,5(10)-triene-3-O-sulfamates: synthesis, in vitro evaluation and computational modelling. Organic and Biomolecular Chemistry, 2008, 6, 4108.	1.5	31

#	Article	IF	CITATIONS
91	Ligand-induced activation of human TRPM2 requires the terminal ribose of ADPR and involves Arg1433 and Tyr1349. Biochemical Journal, 2017, 474, 2159-2175.	1.7	31
92	First synthetic analogues of diphosphoinositol polyphosphates: interaction with PP-InsP5 kinase. Chemical Communications, 2012, 48, 11292.	2.2	30
93	Synthesis ofd- andl-myo-Inositol 1,4,6-Trisphosphate, Regioisomers of a Ubiquitous Second Messenger. Journal of Organic Chemistry, 1996, 61, 8980-8987.	1.7	29
94	The effects of 2-substituted oestrogen sulphamates on the growth of prostate and ovarian cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2003, 84, 317-325.	1.2	29
95	2-MeOE2bisMATE and 2-EtE2bisMATE induce cell cycle arrest and apoptosis in breast cancer xenografts as shown by a novel exÂvivo technique. Breast Cancer Research and Treatment, 2008, 111, 251-260.	1.1	29
96	Direct Evidence for ArOS Bond Cleavage upon Inactivation of <i>Pseudomonas aeruginosa</i> Arylsulfatase by Aryl Sulfamates. ChemBioChem, 2008, 9, 613-623.	1.3	29
97	Synthesis and biology of inositol polyphosphate analogues. Biochemical Society Transactions, 1992, 20, 434-442.	1.6	28
98	Regioselective hydrolysis of myo-inositol 1,3,5-orthobenzoate via a 1,2-bridged 2′-phenyl-1′,3′-dioxolan-2′-ylium ion provides a rapid route to the anticancer agent Ins(1,3,4,5,6)P5. Chemical Communications, 2006, , 2989-2991.	2.2	28
99	2′-Deoxy Cyclic Adenosine 5′-Diphosphate Ribose Derivatives: Importance of the 2′-Hydroxyl Motif for the Antagonistic Activity of 8-Substituted cADPR Derivatives. Journal of Medicinal Chemistry, 2008, 51, 1623-1636.	2 2.9	28
100	Steroidomimetic Tetrahydroisoquinolines for the Design of New Microtubule Disruptors. ACS Medicinal Chemistry Letters, 2012, 3, 5-9.	1.3	28
101	Activation of IP3 receptors by synthetic bisphosphate ligands. Chemical Communications, 2009, , 1204.	2.2	27
102	Design, synthesis, and biological evaluation of new arylamide derivatives possessing sulfonate or sulfamate moieties as steroid sulfatase enzyme inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 2762-2767.	1.4	27
103	Synthesis of the enantiomers of myo-inositol 1,2,4,5-tetrakisphosphate, a regioisomer of myo-inositol 1,3,4,5-tetrakisphosphate. Journal of the Chemical Society Perkin Transactions 1, 1997, , 1279-1286.	0.9	26
104	Acyclophostin: A Ribose-Modified Analog of Adenophostin A with High Affinity for Inositol 1,4,5-Trisphosphate Receptors and pH-Dependent Efficacy. Molecular Pharmacology, 1999, 55, 109-117.	1.0	26
105	The design of novel 17β-hydroxysteroid dehydrogenase type 3 inhibitors. Molecular and Cellular Endocrinology, 2009, 301, 259-265.	1.6	26
106	Chimeric microtubule disruptors. Chemical Communications, 2010, 46, 2907.	2.2	26
107	Synthesis and Structure–Activity Relationship Studies of Derivatives of the Dual Aromatase–Sulfatase Inhibitor 4â€{[(4 yanophenyl)(4 <i>H</i> â€1,2,4â€triazolâ€4â€yl)amino]methyl}phenyl sulfamate. ChemMedC 2013, 8, 779-799.	Cheen,	26
108	A Small Molecule Inhibitor of PDK1/PLCγ1 Interaction Blocks Breast and Melanoma Cancer Cell Invasion. Scientific Reports, 2016, 6, 26142.	1.6	26

#	Article	IF	CITATIONS
109	Adenophostins. Current Topics in Membranes, 2010, 66, 209-233.	0.5	25
110	â€~Click cyclic ADP-ribose': a neutral second messenger mimic. Chemical Communications, 2014, 50, 2458-2461.	2.2	25
111	Inhibition of MDA-MB-231 cell cycle progression and cell proliferation by C-2-substituted oestradiolmono- andbis-3-O-sulphamates. International Journal of Cancer, 2005, 117, 150-159.	2.3	24
112	Catalysis-associated Conformational Changes Revealed by Human CD38 Complexed with a Non-hydrolyzable Substrate Analog*. Journal of Biological Chemistry, 2007, 282, 24825-24832.	1.6	24
113	CD38 Structure-Based Inhibitor Design Using the N1-Cyclic Inosine 5′-Diphosphate Ribose Template. PLoS ONE, 2013, 8, e66247.	1.1	24
114	Design of Potent and Selective Inhibitors of myo-Inositol 1,4,5-Trisphosphate 5-Phosphatase. Biochemistry, 1994, 33, 10763-10769.	1.2	23
115	Synthesis of 3-Position-Modified Analogues ofmyo-Inositol 1,4,5-Trisphosphate, Tools for Investigation of the Polyphosphoinositide Pathway of Cellular Signaling. Journal of Organic Chemistry, 1997, 62, 8335-8340.	1.7	23
116	Total Synthesis of Nucleobase-Modified Adenophostin A Mimics. Chemistry - A European Journal, 2001, 7, 4937-4946.	1.7	23
117	Novel, potent inhibitors of 17β-hydroxysteroid dehydrogenase type 1. Molecular and Cellular Endocrinology, 2006, 248, 204-207.	1.6	23
118	scyllo â€inositol Pentakisphosphate as an Analogue of myo â€inositol 1,3,4,5,6â€Pentakisphosphate: Chemical Synthesis, Physicochemistry and Biological Applications. ChemBioChem, 2006, 7, 1114-1122.	1.3	23
119	Synthesis of cyclic adenosine 5′-diphosphate ribose analogues: a C2′ endo/syn "southern―ribose conformation underlies activity at the sea urchin cADPR receptor. Organic and Biomolecular Chemistry, 2011, 9, 278-290.	1.5	23
120	Total Synthesis of a Cyclic Adenosine 5′-Diphosphate Ribose Receptor Agonist. Journal of Organic Chemistry, 2012, 77, 4191-4197.	1.7	23
121	Bicyclic Analogues ofd-myo-Inositol 1,4,5-Trisphosphate Related to Adenophostin A:Â Synthesis and Biological Activity. Journal of Medicinal Chemistry, 2001, 44, 2108-2117.	2.9	22
122	The role of steroid sulphatase in regulating the oestrogenicity of oestrogen sulphamates. Biochemical and Biophysical Research Communications, 2004, 322, 217-222.	1.0	22
123	Synthesis of Adenophostin A Analogues Conjugating an Aromatic Group at the 5â€ [~] -Position as Potent IP3 Receptor Ligands. Journal of Medicinal Chemistry, 2006, 49, 5750-5758.	2.9	22
124	Aberrant Cyclization Affords a C-6 Modified Cyclic Adenosine 5′-Diphosphoribose Analogue with Biological Activity in Jurkat T Cells. Journal of Medicinal Chemistry, 2012, 55, 1478-1489.	2.9	22
125	Contribution of Phosphates and Adenine to the Potency of Adenophostins at the IP ₃ Receptor: Synthesis of All Possible Bisphosphates of Adenophostin A. Journal of Medicinal Chemistry, 2012, 55, 1706-1720.	2.9	22
126	Stimulation of Inositol 1,4,5-Trisphosphate (IP3) Receptor Subtypes by Analogues of IP3. PLoS ONE, 2013, 8, e54877.	1.1	22

#	Article	IF	CITATIONS
127	Structure–Activity Relationships of C-17-Substituted Estratriene-3-O-sulfamates as Anticancer Agents. Journal of Medicinal Chemistry, 2011, 54, 4863-4879.	2.9	21
128	C-3- and C-4-Substituted Bicyclic Coumarin Sulfamates as Potent Steroid Sulfatase Inhibitors. ACS Omega, 2018, 3, 10748-10772.	1.6	21
129	A disaccharide polyphosphate mimic of 1d-myo-inositol 1,4,5-trisphosphate. Chemical Communications, 1997, , 449-450.	2.2	20
130	Synthesis, Calcium Mobilizing, and Physicochemical Properties ofd-chiro-Inositol 1,3,4,6-Tetrakisphosphate, a Novel and Potent Ligand at thed-myo-Inositol 1,4,5-Trisphosphate Receptor. Journal of Medicinal Chemistry, 1999, 42, 1991-1998.	2.9	20
131	Novel Inositol Phospholipid Headgroup Surrogate Crystallized in the Pleckstrin Homology Domain of Protein Kinase Bα. ACS Chemical Biology, 2007, 2, 242-246.	1.6	20
132	8-Bromo-cyclic inosine diphosphoribose: towards a selective cyclic ADP-ribose agonist. Biochemical Journal, 2009, 422, 139-149.	1.7	20
133	Contribution of the Adenine Base to the Activity of Adenophostin A Investigated Using a Base Replacement Strategy. Journal of Medicinal Chemistry, 2000, 43, 4278-4287.	2.9	19
134	2-Position Base-Modified Analogues of Adenophostin A as High-Affinity Agonists of the d-myo-Inositol Trisphosphate Receptor:  In Vitro Evaluation and Molecular Modeling. Journal of Organic Chemistry, 2008, 73, 1682-1692.	1.7	19
135	Cyclic Adenosine 5′-Diphosphate Ribose Analogs without a "Southern―Ribose Inhibit ADP-ribosyl Cyclase–Hydrolase CD38. Journal of Medicinal Chemistry, 2014, 57, 8517-8529.	2.9	19
136	Bisphosphorylation of a vic-diol using a phosphite approach: synthesis of myo-inositol 4,5-bisphosphate. Journal of the Chemical Society Chemical Communications, 1987, , 626.	2.0	18
137	Structures of Human Carbonic Anhydrase II/Inhibitor Complexes Reveal a Second Binding Site for Steroidal and Nonsteroidal Inhibitors [,] . Biochemistry, 2010, 49, 3464-3476.	1.2	18
138	Synthetic tools for studying the chemical biology of InsP ₈ . Chemical Communications, 2015, 51, 12605-12608.	2.2	18
139	Structure-activity studies of bicyclic and tricyclic analogues of methyllycaconitine. Biochemical Society Transactions, 1997, 25, 545S-545S.	1.6	17
140	Synthesis of adenophostin A and congeners modified at glucose. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1935-1947.	1.3	17
141	Convergent synthesis of adenophostin A analogues via a base replacement strategy. Chemical Communications, 2000, , 219-220.	2.2	17
142	Synthesis and Biological Activity of d- and l-chiro-Inositol 2,3,4,5-Tetrakisphosphate:  Design of a Novel and Potent Inhibitor of Ins(3,4,5,6)P4 1-Kinase/Ins(1,3,4)P3 5/6-Kinase. Journal of Medicinal Chemistry, 2001, 44, 2984-2989.	2.9	17
143	Benzene Polyphosphates as Tools for Cell Signalling: Inhibition of Inositol 1,4,5â€Trisphosphate 5â€Phosphatase and Interaction with the PH Domain of Protein Kinase Bα. ChemBioChem, 2008, 9, 1757-1766.	1.3	17
144	STX2171, a 17β-hydroxysteroid dehydrogenase type 3 inhibitor, is efficacious in vivo in a novel hormone-dependent prostate cancer model. Endocrine-Related Cancer, 2013, 20, 53-64.	1.6	17

#	Article	IF	CITATIONS
145	Synthesis, Antitubulin, and Antiproliferative SAR of C3/C1‣ubstituted Tetrahydroisoquinolines. ChemMedChem, 2014, 9, 350-370.	1.6	17
146	Total synthesis from L-quebrachitol of the D-myo-inositol 1,4,5-trisphosphate analogue, L-chiro-inositol 2,3,5-trisphosphate, a potent inositol 1,4,5-trisphosphate 5-phosphatase and 3-kinase inhibitor. Journal of the Chemical Society Chemical Communications, 1991, , 1014.	2.0	16
147	The metabolism of d-myo-inositol 1,4,5-trisphosphate and d-myo-inositol 1,3,4,5-tetrakisphosphate by porcine skeletal muscle. FEBS Journal, 1994, 222, 955-964.	0.2	16
148	Cell-Permeant Small-Molecule Modulators of NAADP-Mediated Ca2+ Release. Chemistry and Biology, 2006, 13, 659-665.	6.2	16
149	Development of hormone-dependent prostate cancer models for the evaluation of inhibitors of 17β-hydroxysteroid dehydrogenase Type 3. Molecular and Cellular Endocrinology, 2009, 301, 251-258.	1.6	16
150	Tetrahydroisoquinolinoneâ€Based Steroidomimetic and Chimeric Microtubule Disruptors. ChemMedChem, 2014, 9, 85-108.	1.6	16
151	Cellular Internalisation of an Inositol Phosphate Visualised by Using Fluorescent InsP ₅ . ChemBioChem, 2014, 15, 57-67.	1.3	16
152	The inositol pyrophosphate 5-InsP ₇ drives sodium-potassium pump degradation by relieving an autoinhibitory domain of PI3K p85α. Science Advances, 2020, 6, .	4.7	16
153	A new series of aryl sulfamate derivatives: Design, synthesis, and biological evaluation. Bioorganic and Medicinal Chemistry, 2020, 28, 115406.	1.4	16
154	Stimulation of Inositol 1,4,5-Trisphosphate (IP3) Receptor Subtypes by Adenophostin A and Its Analogues. PLoS ONE, 2013, 8, e58027.	1.1	16
155	(2-Hydroxyethyl)-α-D-glucopyranoside-2′,3,4-trisphosphate: synthesis of a second messenger mimic related to adenophostin A. Journal of the Chemical Society Chemical Communications, 1995, , 1169-1170.	2.0	15
156	A Systematic Study of C-Glucoside Trisphosphates as myo-Inositol Trisphosphate Receptor Ligands. Synthesis of β-C-Glucoside Trisphosphates Based on the Conformational Restriction Strategy. Journal of Medicinal Chemistry, 2006, 49, 1900-1909.	2.9	15
157	3-Hydroxybenzene 1,2,4-Trisphosphate, a Novel Second Messenger Mimic and unusual Substrate for Type-I myo-Inositol 1,4,5-Trisphosphate 5-Phosphatase: Synthesis and Physicochemistry. ChemBioChem, 2006, 7, 1696-1706.	1.3	15
158	Synthesis, Anti-tubulin and Antiproliferative SAR of Steroidomimetic Dihydroisoquinolinones. ChemMedChem, 2014, 9, 798-812.	1.6	15
159	Pharmacological activation of the ryanodine receptor in Jurkat T-lymphocytes. British Journal of Pharmacology, 1999, 128, 1235-1240.	2.7	14
160	Chemical Synthesis of the Second Messenger Nicotinic Acid Adenine Dinucleotide Phosphate by Total Synthesis of Nicotinamide Adenine Dinucleotide Phosphate. Angewandte Chemie - International Edition, 2004, 43, 4637-4640.	7.2	14
161	Regioselective Opening of <i>myo</i> -Inositol Orthoesters: Mechanism and Synthetic Utility. Journal of Organic Chemistry, 2013, 78, 2275-2288.	1.7	14
162	Optimisation of Tetrahydroisoquinolineâ€Based Chimeric Microtubule Disruptors. ChemMedChem, 2014, 9, 1783-1793.	1.6	14

#	Article	IF	CITATIONS
163	Different substrate specificities of the two ADPR binding sites in TRPM2 channels of Nematostella vectensis and the role of IDPR. Scientific Reports, 2019, 9, 4985.	1.6	14
164	Synthesis of Terminal Ribose Analogues of Adenosine 5′-Diphosphate Ribose as Probes for the Transient Receptor Potential Cation Channel TRPM2. Journal of Organic Chemistry, 2019, 84, 6143-6157.	1.7	14
165	3,17β-Bis-sulfamoyloxy-2-methoxyestra-1,3,5(10)-triene and Nonsteroidal Sulfamate Derivatives Inhibit Carbonic Anhydrase IX: Structure–Activity Optimization for Isoform Selectivity. Journal of Medicinal Chemistry, 2019, 62, 2202-2212.	2.9	14
166	1-(5-Phospho-beta-d-Ribosyl)2'-Phosphoadenosine 5'-Phosphate Cyclic Anhydride Induced Ca2+ Release in Human T-Cell Lines. FEBS Journal, 1997, 245, 411-417.	0.2	13
167	A Definitive Synthesis ofD-myo-Inositol 1,4,5,6-Tetrakisphosphate and Its EnantiomerD-myo-Inositol 3,4,5,6-Tetrakisphosphate from a Novel Butane-2,3-diacetal-Protected Inositol. Chemistry - A European Journal, 2003, 9, 6207-6214.	1.7	12
168	Guanophostin A: Synthesis and evaluation of a high affinity agonist of the d-myo-inositol 1,4,5-trisphosphate receptor. Chemical Communications, 2006, , 2015.	2.2	12
169	Crystal Structures of Type-II Inositol Polyphosphate 5-Phosphatase INPP5B with Synthetic Inositol Polyphosphate Surrogates Reveal New Mechanistic Insights for the Inositol 5-Phosphatase Family. Biochemistry, 2016, 55, 1384-1397.	1.2	12
170	Multiple substrate recognition by yeast diadenosine and diphosphoinositol polyphosphate phosphote phosphate clamping. Science Advances, 2021, 7, .	4.7	12
171	Adenophostin A and ribophostin, but not inositol 1,4,5-trisphosphate or manno-adenophostin, activate the Ca2+ release-activated Ca2+ current, ICRAC, in weak intracellular Ca2+ buffer. Biochemical Journal, 2002, 361, 133-141.	1.7	11
172	Multivalent Benzene Polyphosphate Derivatives are Non-Ca ²⁺ -Mobilizing Ins(1,4,5)P ₃ Receptor Antagonists. Messenger (Los Angeles, Calif: Print), 2012, 1, 167-181.	0.3	11
173	Synthesis and inÂvitro evaluation of piperazinyl-ureido sulfamates as steroid sulfatase inhibitors. European Journal of Medicinal Chemistry, 2019, 182, 111614.	2.6	11
174	A synthetic cyclitol-nucleoside conjugate polyphosphate is a highly potent second messenger mimic. Chemical Science, 2019, 10, 5382-5390.	3.7	11
175	<scp>d</scp> - <i>chiro</i> -Inositol Ribophostin: A Highly Potent Agonist of <scp>d</scp> - <i>myo</i> -Inositol 1,4,5-Trisphosphate Receptors: Synthesis and Biological Activities. Journal of Medicinal Chemistry, 2020, 63, 3238-3251.	2.9	11
176	Adenophostin A and ribophostin, but not inositol 1,4,5-trisphosphate or manno-adenophostin, activate the Ca2+ release-activated Ca2+ current, ICRAC, in weak intracellular Ca2+ buffer. Biochemical Journal, 2002, 361, 133.	1.7	10
177	Targeted NF1 cancer therapeutics with multiple modes of action: small molecule hormone-like agents resembling the natural anticancer metabolite, 2-methoxyoestradiol. British Journal of Cancer, 2015, 113, 1158-1167.	2.9	10
178	Synthesis of an α-phosphono-α,α-difluoroacetamide analogue of the diphosphoinositol pentakisphosphate 5-InsP ₇ . MedChemComm, 2019, 10, 1165-1172.	3.5	10
179	Stereochemical evidence for a phosphorylpyridinium intermediate in the iodine-mediated desulphurisation of a phosphorothioate diester. Journal of the Chemical Society Chemical Communications, 1985, , 800.	2.0	9
180	Intracellular recognition sites for inositol 1,4,5-triphosphate and inositol 1,3,4,5-tetrakisphosphate. Biochemical Society Transactions, 1991, 19, 888-893.	1.6	9

#	Article	IF	CITATIONS
181	<i>myo</i> -Inositol 1,4,6-Trisphosphorothioate and <i>myo</i> -Inositol 1,3,6-Trisphosphorothioate: Partial Agonists with Very Low Intrinsic Activity at the Platelet <i>myo</i> -Inositol 1,4,5-Trisphosphate Receptor. Molecular Pharmacology, 2000, 57, 595-601.	1.0	9
182	Inframolecular acid–base and coordination properties towards Na ⁺ and Mg ²⁺ of myo-inositol 1,3,4,5,6-pentakisphosphate: a structural approach to biologically relevant species. Dalton Transactions, 2013, 42, 6021-6032.	1.6	9
183	Tetrahydroisoquinoline Sulfamates as Potent Microtubule Disruptors: Synthesis, Antiproliferative and Antitubulin Activity of Dichlorobenzyl-Based Derivatives, and a Tubulin Cocrystal Structure. ACS Omega, 2019, 4, 755-764.	1.6	9
184	Designer small molecules to target calcium signalling. Biochemical Society Transactions, 2015, 43, 417-425.	1.6	8
185	Accessing simply-substituted 4-hydroxytetrahydroisoquinolines via Pomeranz–Fritsch–Bobbitt reaction with non-activated and moderately-activated systems. Beilstein Journal of Organic Chemistry, 2017, 13, 1871-1878.	1.3	8
186	Simple synthesis of 32P-labelled inositol hexakisphosphates for study of phosphate transformations. Plant and Soil, 2018, 427, 149-161.	1.8	8
187	Inositol hexakisphosphate increases the size of platelet aggregates. Biochemical Pharmacology, 2019, 161, 14-25.	2.0	8
188	Both <scp>d</scp> - and <scp>l</scp> -Glucose Polyphosphates Mimic <scp>d</scp> - <i>myo</i> -Inositol 1,4,5-Trisphosphate: New Synthetic Agonists and Partial Agonists at the Ins(1,4,5)P ₃ Receptor. Journal of Medicinal Chemistry, 2020, 63, 5442-5457.	2.9	8
189	The In Vitro and In Vivo Activity of the Microtubule Disruptor STX140 Is Mediated by Hif-1 Alpha and CAIX Expression. Anticancer Research, 2015, 35, 5249-61.	0.5	8
190	Calcium Signalling Triggered by NAADP in T Cells Determines Cell Shape and Motility During Immune Synapse Formation. Messenger (Los Angeles, Calif: Print), 2015, 4, 104-111.	0.3	7
191	Small Molecule Antagonists of NAADP-Induced Ca2+ Release in T-Lymphocytes Suggest Potential Therapeutic Agents for Autoimmune Disease. Scientific Reports, 2018, 8, 16775.	1.6	7
192	Modes of cell death induced by tetrahydroisoquinoline-based analogs in MDA-MB-231 breast and A549 lung cancer cell lines. Drug Design, Development and Therapy, 2018, Volume 12, 1881-1904.	2.0	7
193	A synthetic diphosphoinositol phosphate analogue of inositol trisphosphate. MedChemComm, 2018, 9, 1105-1113.	3.5	7
194	Quantal Ca2+ release mediated by very few IP3 receptors that rapidly inactivate allows graded responses to IP3. Cell Reports, 2021, 37, 109932.	2.9	7
195	A structural expos \tilde{A} © of noncanonical molecular reactivity within the protein tyrosine phosphatase WPD loop. Nature Communications, 2022, 13, 2231.	5.8	7
196	Calcium release activity and metabolism of inositol 1,4,5-trisphosphate in T cells. Modulation by novel inositol 1,4,5-trisphosphate 5-phosphatase inhibitors. FEBS Journal, 1994, 222, 515-523.	0.2	6
197	Selective Probes for Nicotinic Acetylcholine Receptors from Substituted AE-Bicyclic Analogs of Methyllycaconitine. ACS Symposium Series, 1998, , 194-205.	0.5	6
198	Poly(ethylene glycol)-linked dimers of d-myo-inositol 1,4,5-trisphosphate. Chemical Communications, 2000, , 983-984.	2.2	6

#	Article	IF	CITATIONS
199	2-O-(2-Aminoethyl)-myo-inositol 1,4,5-trisphosphate as a novel ligand for conjugation: physicochemical properties and synthesis of a new Ins(1,4,5)P3 affinity matrix. Biochemical and Biophysical Research Communications, 2004, 318, 444-452.	1.0	6
200	CHEMICAL SYNTHESIS OF THE NOVEL CA2+ MESSENGER NAADP. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 513-518.	0.4	6
201	Unusual entry to the novel 8-halo-N1-ribosyl hypoxanthine system by degradation of a cyclic adenosine- $5\hat{a}\in^2$ -diphosphate ribose analogue. Chemical Communications, 2006, , 1127.	2.2	6
202	Synthesis and evaluation of thiadiazole derivatives as inhibitors of 11β-hydroxysteroid dehydrogenase type 1. MedChemComm, 2012, 3, 1117.	3.5	6
203	A Fluorescent Probe Identifies Active Site Ligands of Inositol Pentakisphosphate 2-Kinase. Journal of Medicinal Chemistry, 2018, 61, 8838-8846.	2.9	6
204	Rapid and Efficient Microwaveâ€Assisted Friedläder Quinoline Synthesis. ChemistryOpen, 2020, 9, 1113-1122.	0.9	6
205	Synthesis of phosphonoacetate analogues of the second messenger adenosine 5′-diphosphate ribose (ADPR). RSC Advances, 2020, 10, 1776-1785.	1.7	6
206	2-Methoxyestradiol and its derivatives inhibit store-operated Ca2+ entry in T cells: Identification of a new and potent inhibitor. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118988.	1.9	6
207	Inositol Adenophostin: Convergent Synthesis of a Potent Agonist of <scp>d</scp> - <i>myo</i> -Inositol 1,4,5-Trisphosphate Receptors. ACS Omega, 2020, 5, 28793-28811.	1.6	5
208	Allosteric Site on SHIP2 Identified Through Fluorescent Ligand Screening and Crystallography: A Potential New Target for Intervention. Journal of Medicinal Chemistry, 2021, 64, 3813-3826.	2.9	5
209	Second messenger analogues highlight unexpected substrate sensitivity of CD38: total synthesis of the hybrid "L-cyclic inosine 5′-diphosphate ribose― Scientific Reports, 2017, 7, 16100.	1.6	4
210	<i>N</i> â€Phenylâ€1,2,3,4â€ŧetrahydroisoquinoline: An Alternative Scaffold for the Design of 17βâ€Hydroxysteroid Dehydrogenase 1 Inhibitors. ChemMedChem, 2021, 16, 259-291.	1.6	4
211	Design, Synthesis, and Chemical and Biological Properties of Cyclic ADP-4-Thioribose as a Stable Equivalent of Cyclic ADP-Ribose. Messenger (Los Angeles, Calif: Print), 2014, 3, 35-51.	0.3	3
212	Die "anderen―Inositole und ihre Phosphate: Synthese, Biologie und Medizin (sowie jüngste) Tj ETQq0 0 C) rgBT /Ov 1.6	erlgck 10 Tf 5
213	Synthetic cADPR analogues may form only one of two possible conformational diastereoisomers. Scientific Reports, 2018, 8, 15268.	1.6	3
214	Nonsteroidal sulfamate derivatives as new therapeutic approaches for Neurofibromatosis 2 (NF2). BMC Pharmacology & Toxicology, 2019, 20, 67.	1.0	3
215	Phosphorothioate Analogues of D-myo-Inositol 1,4,5-Trisphosphate. ACS Symposium Series, 1991, , 186-201.	0.5	2
216	Synthetic Analogues of the Second Messenger D-MYOInositol 1,4,5 Trisphosphate as Receptor Agonists and Inhibitors of the Enzymes of the Polyphosphoinositide Pathway of Signal Transduction. Phosphorus, Sulfur and Silicon and the Related Elements, 1993, 76, 143-146.	0.8	2

#	Article	IF	CITATIONS
217	Regioisomeric Family of Novel Fluorescent Substrates for SHIP2. ACS Medicinal Chemistry Letters, 2020, 11, 309-315.	1.3	1
218	Substituted Aryl Benzylamines as Potent and Selective Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 3. Molecules, 2021, 26, 7166.	1.7	1
219	Cell Fate following Irradiation of MDA-MB-231 and MCF-7 Breast Cancer Cells Pre-Exposed to the Tetrahydroisoquinoline Sulfamate Microtubule Disruptor STX3451. Molecules, 2022, 27, 3819.	1.7	1
220	Long-Range 31P-31P Spin Coupling Constants in the 31P NMR Spectra of Phosphite Triesters. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 111, 71-71.	0.8	0
221	The Synthesis of Chiral Myo-Inositol Trisphosphate Analogues. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 111, 72-72.	0.8	0
222	Synthesis of Novel Polyphosphate Analogues of Inositol 1,4,5-Trisphosphate. Phosphorus, Sulfur and Silicon and the Related Elements, 1996, 111, 73-73.	0.8	0
223	Structure-Activity Relationships of Adenophostin A and Related Molecules at the 1-D-myo-Inositol 1,4,5-Trisphosphate Receptor. ACS Symposium Series, 1998, , 158-179.	0.5	0
224	Steroid Sulfatase Inhibition: From Concept to Clinic and Beyond. Proceedings (mdpi), 2019, 22, 25.	0.2	0
225	Small Molecule CD38 Inhibitors: Synthesis of 8-Amino-N1-inosine 5′-monophosphate, Analogues and Early Structure-Activity Relationship. Molecules, 2021, 26, 7165.	1.7	0