
Stephan Kissler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580090/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456, 980-984.	27.8	2,111
2	In vivo RNA interference demonstrates a role for Nramp1 in modifying susceptibility to type 1 diabetes. Nature Genetics, 2006, 38, 479-483.	21.4	118
3	The Autoimmunity-Associated Gene CLEC16A Modulates Thymic Epithelial Cell Autophagy and Alters T Cell Selection. Immunity, 2015, 42, 942-952.	14.3	91
4	αv Integrin expression by DCs is required for Th17 cell differentiation and development of experimental autoimmune encephalomyelitis in mice. Journal of Clinical Investigation, 2010, 120, 4445-4452.	8.2	82
5	The Soluble CTLA-4 Splice Variant Protects From Type 1 Diabetes and Potentiates Regulatory T-Cell Function. Diabetes, 2011, 60, 1955-1963.	0.6	79
6	STIM1-Independent T Cell Development and Effector Function In Vivo. Journal of Immunology, 2009, 182, 3390-3397.	0.8	73
7	Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys. ELife, 2021, 10, .	6.0	59
8	<i>PTPN22</i> Silencing in the NOD Model Indicates the Type 1 Diabetes–Associated Allele Is Not a Loss-of-Function Variant. Diabetes, 2013, 62, 896-904.	0.6	58
9	Collective cancer invasion forms an integrin-dependent radioresistant niche. Journal of Experimental Medicine, 2020, 217, .	8.5	55
10	IL-17 Silencing Does Not Protect Nonobese Diabetic Mice from Autoimmune Diabetes. Journal of Immunology, 2012, 188, 216-221.	0.8	54
11	Genome-scale in vivo CRISPR screen identifies RNLS as a target for beta cell protection in type 1 diabetes. Nature Metabolism, 2020, 2, 934-945.	11.9	53
12	Deficiency of HIF1Î \pm in Antigen-Presenting Cells Aggravates Atherosclerosis and Type 1 T-Helper Cell Responses in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2316-2325.	2.4	43
13	Increased β-cell proliferation before immune cell invasion prevents progression of type 1 diabetes. Nature Metabolism, 2019, 1, 509-518.	11.9	38
14	The autoimmunity-associated gene RGS1 affects the frequency of T follicular helper cells. Genes and Immunity, 2016, 17, 228-238.	4.1	32
15	Anti-CD3 Antibody for the Prevention of Type 1 Diabetes: A Story of Perseverance. Biochemistry, 2019, 58, 4107-4111.	2.5	30
16	Peripherally induced regulatory T cells contribute to the control of autoimmune diabetes in the NOD mouse model. European Journal of Immunology, 2018, 48, 1211-1216.	2.9	24
17	In Vivo Enrichment of Diabetogenic T Cells. Diabetes, 2017, 66, 2220-2229.	0.6	23
18	<i>Ptpn22</i> Modifies Regulatory T Cell Homeostasis via GITR Upregulation. Journal of Immunology, 2016, 196, 2145-2152.	0.8	20

STEPHAN KISSLER

#	Article	IF	CITATIONS
19	Regulation of thymocyte trafficking by Tagap, a GAP domain protein linked to human autoimmunity. Science Signaling, 2018, 11, .	3.6	17
20	Thymic selection can compensate for mutations affecting T cell activation and generate a normal T cell repertoire in mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 210-214.	7.1	14
21	The type 1 diabetes candidate gene Dexi does not affect disease risk in the nonobese diabetic mouse model. Genes and Immunity, 2020, 21, 71-77.	4.1	7
22	Targeted surveillance strategies for efficient detection of novel antibiotic resistance variants. ELife, 2020, 9, .	6.0	6
23	From genome-wide association studies to etiology: probing autoimmunity genes by RNAi. Trends in Molecular Medicine, 2011, 17, 634-640.	6.7	5
24	Genetic Modifiers of Thymic Selection and Central Tolerance in Type 1 Diabetes. Frontiers in Immunology, 2022, 13, 889856.	4.8	4
25	Regulation of B cell homeostasis by Ptpn22 contributes to type 1 diabetes in NOD mice. Endocrine, 2020, 67, 535-543.	2.3	3
26	436-P: Characterization of Autoimmunity in the Acceleration of Atherosclerosis in Type 1 Diabetes. Diabetes, 2020, 69, 436-P.	0.6	3
27	Toward a precision medicine approach for autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2204841119.	7.1	2
28	CD5 Controls Gut Immunity by Shaping the Cytokine Profile of Intestinal T Cells. Frontiers in Immunology, 0, 13, .	4.8	2
29	Studying Autoimmunity by In Vivo RNA Interference. Methods in Molecular Biology, 2009, 555, 109-118.	0.9	1