
Hong-Guang Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580085/publications.pdf Version: 2024-02-01

HONG-GUANC XIA

#	Article	IF	CITATIONS
1	Discovery of Novel GR Ligands toward Druggable GR Antagonist Conformations Identified by MD Simulations and Markov State Model Analysis. Advanced Science, 2022, 9, e2102435.	11.2	28
2	Inhibition of RIPK1 by ZJU-37 promotes oligodendrocyte progenitor proliferation and remyelination via NF-κB pathway. Cell Death Discovery, 2022, 8, 147.	4.7	4
3	Mitophagy induced by UMIâ€₹7 preserves mitochondrial fitness in renal tubular epithelial cells and alleviates renal fibrosis. FASEB Journal, 2022, 36, e22342.	0.5	21
4	RIPK1 Promotes Energy Sensing by the mTORC1 Pathway. Molecular Cell, 2021, 81, 370-385.e7.	9.7	25
5	Targeting MCL1 to induce mitophagy is a potential therapeutic strategy for Alzheimer disease. Autophagy, 2021, 17, 818-819.	9.1	18
6	ARIH1 signaling promotes anti-tumor immunity by targeting PD-L1 for proteasomal degradation. Nature Communications, 2021, 12, 2346.	12.8	52
7	5-((7-Chloro-6-fluoro-1h-indol-3-yl) methyl)-3-methylimidazolidine-2,4-dione as a RIP1 inhibitor protects LPS/D-galactosamine-induced liver failure. Life Sciences, 2021, 273, 119304.	4.3	3
8	Metformin activates chaperone-mediated autophagy and improves disease pathologies in an Alzheimer disease mouse model. Protein and Cell, 2021, 12, 769-787.	11.0	63
9	Mitophagy Regulates Neurodegenerative Diseases. Cells, 2021, 10, 1876.	4.1	24
10	Delivery of a system x _c ^{â^'} inhibitor by a redox-responsive levodopa prodrug nanoassembly for combination ferrotherapy. Journal of Materials Chemistry B, 2021, 9, 7172-7181.	5.8	8
11	SC75741, A Novel c-Abl Inhibitor, Promotes the Clearance of TDP25 Aggregates via ATG5-Dependent Autophagy Pathway. Frontiers in Pharmacology, 2021, 12, 741219.	3.5	6
12	Deubiquitination and Stabilization of PD-L1 by USP21 American Journal of Translational Research (discontinued), 2021, 13, 12763-12774.	0.0	0
13	Pharmacological targeting of MCL-1 promotes mitophagy and improves disease pathologies in an Alzheimer's disease mouse model. Nature Communications, 2020, 11, 5731.	12.8	94
14	Drug Discovery Targeting Anaplastic Lymphoma Kinase (ALK). Journal of Medicinal Chemistry, 2019, 62, 10927-10954.	6.4	80
15	Photoredox-catalyzed sulfonylation of alkenylcyclobutanols with the insertion of sulfur dioxide through semipinacol rearrangement. Organic Chemistry Frontiers, 2019, 6, 1873-1878.	4.5	53
16	C(sp ²)–H functionalization of aldehyde-derived hydrazones <i>via</i> a radical process. Organic and Biomolecular Chemistry, 2018, 16, 1227-1241.	2.8	28
17	A copper-catalyzed sulfonylative C–H bond functionalization from sulfur dioxide and aryldiazonium tetrafluoroborates. Organic Chemistry Frontiers, 2018, 5, 366-370.	4.5	58
18	Thiosulfonylation of alkenes with the insertion of sulfur dioxide under non-metallic conditions. Organic Chemistry Frontiers, 2018, 5, 2940-2944.	4.5	26

HONG-GUANG XIA

#	Article	IF	CITATIONS
19	Intramolecular oxysulfonylation of alkenes with the insertion of sulfur dioxide under photocatalysis. Organic Chemistry Frontiers, 2018, 5, 2437-2441.	4.5	31
20	Generation of benzosultams via a radical process with the insertion of sulfur dioxide. Organic Chemistry Frontiers, 2017, 4, 1121-1124.	4.5	59
21	Radical cyclization of benzene-tethered 1,7-enynes with aryldiazonium tetrafluoroborates: a facile route to benzo[j]phenanthridines. Organic Chemistry Frontiers, 2017, 4, 1318-1321.	4.5	46
22	Palladium-catalyzed direct sulfonylation of C–H bonds with the insertion of sulfur dioxide. Chemical Communications, 2017, 53, 12548-12551.	4.1	62
23	mTORC1 Phosphorylates Acetyltransferase p300 to Regulate Autophagy and Lipogenesis. Molecular Cell, 2017, 68, 323-335.e6.	9.7	128
24	Base-controlled [3+3] cycloaddition of isoquinoline N-oxides with azaoxyallyl cations. Chemical Communications, 2016, 52, 10415-10418.	4.1	69
25	Recent advances in photoinduced trifluoromethylation and difluoroalkylation. Organic Chemistry Frontiers, 2016, 3, 1163-1185.	4.5	228
26	Generation of (2-oxoindolin-3-yl)methanesulfonohydrazides via a photo-induced reaction of N-(2-iodoaryl)acrylamide, DABSO, and hydrazine. Organic Chemistry Frontiers, 2016, 3, 865-869.	4.5	69
27	A palladium-catalyzed coupling reaction of aryl nonaflates, sulfur dioxide, and hydrazines. Organic and Biomolecular Chemistry, 2016, 14, 1665-1669.	2.8	19
28	Copper(<scp>i</scp>)-catalyzed sulfonylation of (2-alkynylaryl)boronic acids with DABSO. Organic Chemistry Frontiers, 2016, 3, 693-696.	4.5	70
29	A palladium-catalyzed tandem reaction of 2-alkynylbenzenesulfonamides with 2-(2-bromoarylidene)cyclobutanones. Organic Chemistry Frontiers, 2016, 3, 697-700.	4.5	6
30	Pharmacologic agents targeting autophagy. Journal of Clinical Investigation, 2015, 125, 5-13.	8.2	198
31	An unexpected three-component reaction of 2-alkylenecyclobutanone and N′-(2-alkynylbenzylidene)hydrazide with water. RSC Advances, 2015, 5, 85225-85228.	3.6	7
32	Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. Journal of Cell Biology, 2015, 210, 705-716.	5.2	95
33	A palladium-catalyzed tandem reaction of 2-(2-bromobenzylidene)cyclobutanone with 2-alkynylphenol. Chemical Communications, 2015, 51, 16483-16485.	4.1	11
34	Activation of chaperone-mediated autophagy as a potential anticancer therapy. Autophagy, 2015, 11, 2370-2371.	9.1	18
35	G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L. ELife, 2015, 4, e06734.	6.0	80
36	Degradation of HK2 by chaperone-mediated autophagy promotes metabolic catastrophe and cell death. Journal of Experimental Medicine, 2015, 212, 212100IA79.	8.5	0

HONG-GUANG XIA

#	Article	IF	CITATIONS
37	Chaperone-mediated autophagy degrades mutant p53. Genes and Development, 2013, 27, 1718-1730.	5.9	154
38	Small molecule "on―and "off―switches for autophagy. FASEB Journal, 2012, 26, 220.2.	0.5	0
39	Abstract SY36-03: Development of small-molecule inhibitors of autophagy as anticancer therapy. , 2012, , .		0
40	Diphenylbutylpiperidine-based cell autophagy inducers: Design, synthesis and SAR studies. MedChemComm, 2011, 2, 315.	3.4	5
41	Beclin1 Controls the Levels of p53 by Regulating the Deubiquitination Activity of USP10 and USP13. Cell, 2011, 147, 223-234.	28.9	687
42	Mitochondrial Electron Transport Chain Complex III Is Required for Antimycin A to Inhibit Autophagy. Chemistry and Biology, 2011, 18, 1474-1481.	6.0	73
43	Synthesis and SAR study of diphenylbutylpiperidines as cell autophagy inducers. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 234-239.	2.2	27
44	Total synthesis and cytotoxicity of bisebromoamide and its analogues. Tetrahedron Letters, 2011, 52, 2124-2127.	1.4	19
45	Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy, 2010, 6, 61-66.	9.1	170
46	A facile and highly efficient route to α-amino phosphonates via three-component reactions catalyzed by Mg(ClO4)2or molecular iodine. Organic and Biomolecular Chemistry, 2006, 4, 1663-1666.	2.8	86
47	Expeditious approach to α-amino phosphonates via three-component solvent-free reactions catalyzed by NBS or CBr4. Green Chemistry, 2006, 8, 365.	9.0	54
48	Palladium-catalyzed Suzuki–Miyaura couplings of potassium aryl trifluoroborates with 4-tosyloxycoumarins or 4-tosyloxyquinolin-2(1H)-one. Tetrahedron Letters, 2006, 47, 1525-1528.	1.4	54
49	Sc(OTf)3-Catalyzed [3+2]-cycloaddition of aziridines with nitriles under solvent-free conditions. Tetrahedron Letters, 2006, 47, 1509-1512.	1.4	48
50	Molecular iodine: a highly efficient catalyst in the synthesis of quinolinesvia Friedläder annulation. Organic and Biomolecular Chemistry, 2006, 4, 126-129.	2.8	153
51	A Highly Efficient Catalyst FeCl3 in the Synthesis ofα-Amino Phosphonates via Three-component Reactions. Chinese Journal of Chemistry, 2006, 24, 1054-1057.	4.9	22
52	Ring Opening of Aziridines with Silylated Nucleophiles under Neutral Conditions. European Journal of Organic Chemistry, 2005, 2005, 4769-4772.	2.4	36
53	Tertiary amines as highly efficient catalysts in the ring-opening reactions of epoxides with amines or thiols in H2O: expeditious approach to β-amino alcohols and Ĩ²-aminothioethers. Green Chemistry, 2005, 7, 708.	9.0	66