Jacqueline Boutin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intrinsic error in the air-sea CO ₂ exchange coefficient resulting from the use of satellite wind speeds. Tellus, Series B: Chemical and Physical Meteorology, 2022, 43, 236.	1.6	11
2	Seasonal variation of the CO ₂ exchange coefficient over the global ocean using satellite wind speed measurements. Tellus, Series B: Chemical and Physical Meteorology, 2022, 43, 247.	1.6	22
3	Satellite sea surface temperature: a powerful tool for interpreting in situ <i>p</i> CO ₂ measurements in the equatorial Pacific Ocean. Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 490.	1.6	16
4	Sea water fugacity of CO ₂ at the PIRATA mooring at 6°S, 10°W. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 636.	1.6	20
5	Air-sea CO ₂ flux variability in the equatorial Pacific Ocean near 100°w. Tellus, Series B: Chemical and Physical Meteorology, 2022, 51, 734.	1.6	9
6	Satellite and In Situ Sampling Mismatches: Consequences for the Estimation of Satellite Sea Surface Salinity Uncertainties. Remote Sensing, 2022, 14, 1878.	4.0	3
7	Wintertime process study of the North Brazil Current rings reveals the region as a larger sink for CO ₂ than expected. Biogeosciences, 2022, 19, 2969-2988.	3.3	12
8	Correcting Sea Surface Temperature Spurious Effects in Salinity Retrieved From Spaceborne L-Band Radiometer Measurements. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 7256-7269.	6.3	23
9	Properties of surface water masses in the Laptev and the East Siberian seas in summer 2018 from in situ and satellite data. Ocean Science, 2021, 17, 221-247.	3.4	18
10	Objective Analysis of SMOS and SMAP Sea Surface Salinity to Reduce Large-Scale and Time-Dependent Biases from Low to High Latitudes. Journal of Atmospheric and Oceanic Technology, 2021, 38, 405-421.	1.3	11
11	Formation and Evolution of a Freshwater Plume in the Northwestern Tropical Atlantic in February 2020. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016981.	2.6	17
12	Results of the Dragon 4 Project on New Ocean Remote Sensing Data for Operational Applications. Remote Sensing, 2021, 13, 2847.	4.0	2
13	SMOS Level 3 Salinity Maps at CATDS: What do We Learn with Recent Reprocessings?. , 2021, , .		0
14	CCI+SSS, A New SMOS L2 Reprocessing Reduces Errors on Sea Surface Salinity Time Series. , 2021, , .		2
15	Seawater Dielectric Constant At L-Band: How Consistent Are New Parametrisations Inferred from Smos and Laboratory Measurements?. , 2021, , .		0
16	Satelliteâ€Based Sea Surface Salinity Designed for Ocean and Climate Studies. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017676.	2.6	29
17	New insights into SMOS sea surface salinity retrievals in the Arctic Ocean. Remote Sensing of Environment, 2020, 249, 112027.	11.0	31
18	Tropical Instability Waves in the Atlantic Ocean: Investigating the Relative Role of Sea Surface Salinity and Temperature From 2010 to 2018. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016641.	2.6	10

#	Article	IF	CITATIONS
19	Bay of Bengal Sea surface salinity variability using a decade of improved SMOS re-processing. Remote Sensing of Environment, 2020, 248, 111964.	11.0	37
20	Relaxation of Wind Stress Drives the Abrupt Onset of Biological Carbon Uptake in the Kerguelen Bloom: A Multisensor Approach. Geophysical Research Letters, 2020, 47, e2019GL085992.	4.0	15
21	Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019). Remote Sensing of Environment, 2020, 242, 111769.	11.0	120
22	Variability of Satellite Sea Surface Salinity Under Rainfall. Advances in Global Change Research, 2020, , 1155-1176.	1.6	7
23	Reference-Quality Emission and Backscatter Modeling for the Ocean. Bulletin of the American Meteorological Society, 2020, 101, E1593-E1601.	3.3	10
24	A New L-Band Passive Radiometer For Earth Observation: SMOS-High Resolution (SMOS-HR). , 2020, , .		9
25	Satellite Salinity Observing System: Recent Discoveries and the Way Forward. Frontiers in Marine Science, 2019, 6, .	2.5	120
26	Intraseasonal Variability of Surface Salinity in the Eastern Tropical Pacific Associated With Mesoscale Eddies. Journal of Geophysical Research: Oceans, 2019, 124, 2861-2875.	2.6	22
27	Remote Sensing of Sea Surface Salinity: Comparison of Satellite and In Situ Observations and Impact of Retrieval Parameters. Remote Sensing, 2019, 11, 750.	4.0	55
28	Comparisons of Ocean Radiative Transfer Models With SMAP and AMSR2 Observations. Journal of Geophysical Research: Oceans, 2019, 124, 7683-7699.	2.6	18
29	Eddyâ€Induced Salinity Changes in the Tropical Pacific. Journal of Geophysical Research: Oceans, 2019, 124, 374-389.	2.6	26
30	Northward Pathway Across the Tropical North Pacific Ocean Revealed by Surface Salinity: How do El Niño Anomalies Reach Hawaii?. Journal of Geophysical Research: Oceans, 2018, 123, 2697-2715.	2.6	28
31	Precipitation Estimates from SMOS Seaâ€Surface Salinity. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 103-119.	2.7	20
32	Revised Mitigation of Systematic Errors in SMOS Sea Surface Salinity. , 2018, , .		1
33	Present and Future of L-Band Radiometry. , 2018, , .		2
34	Expected Performances of the Copernicus Imaging Microwave Radiometer (CIMR) for an Allâ€Weather and High Spatial Resolution Estimation of Ocean and Sea Ice Parameters. Journal of Geophysical Research: Oceans, 2018, 123, 7564-7580.	2.6	87
35	Increase of dissolved inorganic carbon and decrease in pH in near-surface waters in the Mediterranean Sea during the past two decades. Biogeosciences, 2018, 15, 5653-5662.	3.3	17
36	New SMOS Sea Surface Salinity with reduced systematic errors and improved variability. Remote Sensing of Environment, 2018, 214, 115-134.	11.0	132

#	Article	IF	CITATIONS
37	Measuring pH variability using an experimental sensor on an underwater glider. Ocean Science, 2017, 13, 427-442.	3.4	14
38	Interannual anomalies of SMOS sea surface salinity. Remote Sensing of Environment, 2016, 180, 128-136.	11.0	32
39	Mitigation of systematic errors in SMOS sea surface salinity. Remote Sensing of Environment, 2016, 180, 164-177.	11.0	47
40	Satellite and In Situ Salinity: Understanding Near-Surface Stratification and Subfootprint Variability. Bulletin of the American Meteorological Society, 2016, 97, 1391-1407.	3.3	126
41	Roughness and foam signature on SMOS-MIRAS brightness temperatures: A semi-theoretical approach. Remote Sensing of Environment, 2016, 180, 221-233.	11.0	32
42	Assessment of seasonal and year-to-year surface salinity signals retrieved from SMOS and Aquarius missions in the Bay of Bengal. International Journal of Remote Sensing, 2016, 37, 1089-1114.	2.9	21
43	A multi-decade record of high-quality <i>f</i> CO ₂ data in version 3 of the Surface Ocean CO ₂ Atlas (SOCAT). Earth System Science Data, 2016. 8. 383-413.	9.9	413
44	New insights into <i>f</i> CO ₂ variability in the tropical eastern Pacific Ocean using SMOS SSS. Biogeosciences, 2015, 12, 7315-7329.	3.3	11
45	Surface Salinity in the North Atlantic Subtropical Gyre During the STRASSE/SPURS Summer 2012 Cruise. Oceanography, 2015, 28, 114-123.	1.0	17
46	Carbon, oxygen and biological productivity in the Southern Ocean in and out the Kerguelen plume: CARIOCA drifter results. Biogeosciences, 2015, 12, 3513-3524.	3.3	5
47	Sea Surface Salinity and Temperature Budgets in the North Atlantic Subtropical Gyre during SPURS Experiment: August 2012-August 2013. Frontiers in Marine Science, 2015, 2, .	2.5	11
48	Observation of the surface horizontal thermohaline variability at mesoscale to submesoscale in the northâ€eastern subtropical <scp>A</scp> tlantic <scp>O</scp> cean. Journal of Geophysical Research: Oceans, 2015, 120, 2588-2600.	2.6	11
49	SMOS salinity in the subtropical North Atlantic salinity maximum: 2. Twoâ€dimensional horizontal thermohaline variability. Journal of Geophysical Research: Oceans, 2015, 120, 972-987.	2.6	29
50	Roles of biological and physical processes in driving seasonal air–sea CO 2 flux in the Southern Ocean: New insights from CARIOCA pCO 2. Journal of Marine Systems, 2015, 147, 9-20.	2.1	24
51	New total electron content retrieval improves SMOS sea surface salinity. Journal of Geophysical Research: Oceans, 2014, 119, 7295-7307.	2.6	12
52	Observed small spatial scale and seasonal variability of the CO ₂ system in the Southern Ocean. Biogeosciences, 2014, 11, 75-90.	3.3	18
53	Comparison of SMOS and Aquarius Sea Surface Salinity and analysis of possible causes for the differences. , 2014, , .		1
54	SMOS salinity in the subtropical North Atlantic salinity maximum: 1. Comparison with Aquarius and in situ salinity. Journal of Geophysical Research: Oceans, 2014, 119, 8878-8896.	2.6	39

#	Article	IF	CITATIONS
55	Validation of Salinity Data from Surface Drifters. Journal of Atmospheric and Oceanic Technology, 2014, 31, 967-983.	1.3	9
56	Sea surface salinity signatures of tropical instability waves: New evidences from SMOS. , 2014, , .		0
57	Sea Surface Salinity Observations from Space with the SMOS Satellite: A New Means to Monitor the Marine Branch of the Water Cycle. Surveys in Geophysics, 2014, 35, 681-722.	4.6	132
58	Errors in SMOS Sea Surface Salinity and their dependency on a priori wind speed. Remote Sensing of Environment, 2014, 146, 159-171.	11.0	26
59	Inter-comparison of SMOS and aquarius Sea Surface Salinity: Effects of the dielectric constant and vicarious calibration. , 2014, , .		12
60	On the physical and biogeochemical processes driving the high frequency variability of <scp>CO</scp> ₂ fugacity at 6°S, 10°W: <scp>P</scp> otential role of the internal waves. Journal of Geophysical Research: Oceans, 2014, 119, 8357-8374.	2.6	3
61	Sea surface salinity structure of the meandering Gulf Stream revealed by SMOS sensor. Geophysical Research Letters, 2014, 41, 3141-3148.	4.0	60
62	Analyzing the 2010–2011 La Niña signature in the tropical Pacific sea surface salinity using in situ data, SMOS observations, and a numerical simulation. Journal of Geophysical Research: Oceans, 2014, 119, 3855-3867.	2.6	40
63	Activeâ€passive synergy for interpreting ocean Lâ€band emissivity: Results from the CAROLS airborne campaigns. Journal of Geophysical Research: Oceans, 2014, 119, 4940-4957.	2.6	10
64	SMOSSea Surface Salinity signals of tropical instability waves. Journal of Geophysical Research: Oceans, 2014, 119, 7811-7826.	2.6	30
65	Sea surface salinity under rain cells: SMOS satellite and in situ drifters observations. Journal of Geophysical Research: Oceans, 2014, 119, 5533-5545.	2.6	47
66	SMOS ocean salinity: Recent improvements and applications. , 2014, , .		1
67	Transfer Across the Air-Sea Interface. Springer Earth System Sciences, 2014, , 55-112.	0.2	69
68	Perspectives and Integration in SOLAS Science. Springer Earth System Sciences, 2014, , 247-306.	0.2	2
69	An update to the Surface Ocean CO ₂ Atlas (SOCAT version 2). Earth System Science Data, 2014, 6, 69-90.	9.9	158
70	Biases Between Measured and Simulated SMOS Brightness Temperatures Over Ocean: Influence of Sun. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 1341-1350.	4.9	30
71	SMOS first data analysis for sea surface salinity determination. International Journal of Remote Sensing, 2013, 34, 3654-3670.	2.9	81
72	Freshwater from the Bay of Biscay shelves in 2009. Journal of Marine Systems, 2013, 109-110, S134-S143.	2.1	13

#	Article	IF	CITATIONS
73	Formation and variability of the South Pacific Sea Surface Salinity maximum in recent decades. Journal of Geophysical Research: Oceans, 2013, 118, 5109-5116.	2.6	34
74	Near–Sea Surface Temperature Stratification from SVP Drifters. Journal of Atmospheric and Oceanic Technology, 2013, 30, 1867-1883.	1.3	8
75	Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain. Ocean Science, 2013, 9, 183-192.	3.4	112
76	A uniform, quality controlled Surface Ocean CO ₂ Atlas (SOCAT). Earth System Science Data, 2013, 5, 125-143.	9.9	158
77	Surface Ocean CO ₂ Atlas (SOCAT) gridded data products. Earth System Science Data, 2013, 5, 145-153.	9.9	101
78	Surpact: A SMOS Surface Wave Rider for Air-Sea Interaction. Oceanography, 2013, 26, 48-57.	1.0	12
79	Remote Sensing of Sea Surface Salinity From CAROLS L-Band Radiometer in the Gulf of Biscay. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 1703-1715.	6.3	17
80	On systematic biases between modeled and measured SMOS brightness temperature. , 2012, , .		0
81	Sea surface salinity as measured by SMOS and by surface autonomous drifters. , 2012, , .		2
82	Large scale variability of SMOS sea surface salinity in 2010 and 2011: Ocean variability and other effects. , 2012, , .		0
83	Optimization of L-Band Sea Surface Emissivity Models Deduced From SMOS Data. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 1414-1426.	6.3	46
84	First Assessment of SMOS Data Over Open Ocean: Part l—Pacific Ocean. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 1648-1661.	6.3	44
85	Overview of the First SMOS Sea Surface Salinity Products. Part I: Quality Assessment for the Second Half of 2010. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 1636-1647.	6.3	66
86	First Assessment of SMOS Data Over Open Ocean: Part II—Sea Surface Salinity. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 1662-1675.	6.3	103
87	Rainâ€induced variability of near seaâ€surface T and S from drifter data. Journal of Geophysical Research, 2012, 117, .	3.3	51
88	Importance of water mass formation regions for the air-sea CO2flux estimate in the Southern Ocean. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	13
89	Validation of SMOS measurements over ocean and improvement of sea surface emissivity modelat L band. , 2011, , .		1
90	CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations. Sensors, 2011, 11, 719-742.	3.8	51

#	Article	IF	CITATIONS
91	SMOS: The Challenging Sea Surface Salinity Measurement From Space. Proceedings of the IEEE, 2010, 98, 649-665.	21.3	339
92	The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle. Proceedings of the IEEE, 2010, 98, 666-687.	21.3	1,507
93	Surface CO2 parameters and air–sea CO2 flux distribution in the eastern equatorial Atlantic Ocean. Journal of Marine Systems, 2010, 82, 135-144.	2.1	16
94	Overview of SMOS Level 2 Ocean Salinity processing and first results. , 2010, , .		4
95	Temperature Measurements from Surface Drifters. Journal of Atmospheric and Oceanic Technology, 2010, 27, 1403-1409.	1.3	13
96	Vertical Variability of Near-Surface Salinity in the Tropics: Consequences for L-Band Radiometer Calibration and Validation. Journal of Atmospheric and Oceanic Technology, 2010, 27, 192-209.	1.3	75
97	Resolving the Global Surface Salinity Field and Variations by Blending Satellite and In Situ Observations. , 2010, , .		42
98	Global average of airâ€sea CO ₂ transfer velocity from QuikSCAT scatterometer wind speeds. Journal of Geophysical Research, 2009, 114, .	3.3	12
99	Mesoscale and diel to monthly variability of CO ₂ and carbon fluxes at the ocean surface in the northeastern Atlantic. Journal of Geophysical Research, 2009, 114, .	3.3	19
100	New in situ estimates of carbon biological production rates in the Southern Ocean from CARIOCA drifter measurements. Geophysical Research Letters, 2009, 36, .	4.0	20
101	Overview of the SMOS Sea Surface Salinity Prototype Processor. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 621-645.	6.3	117
102	Airâ€sea CO ₂ flux variability in frontal regions of the Southern Ocean from CARbon Interface OCean Atmosphere drifters. Limnology and Oceanography, 2008, 53, 2062-2079.	3.1	32
103	Combined Airborne Radio-instruments for Ocean and Land Studies (CAROLS). , 2008, , .		1
104	Carols Campaign, Scientific Data Analysis Results. , 2008, , .		1
105	SMOS sea surface salinity prototype processor: Algorithm validation. , 2007, , .		0
106	Surface Salinity Measurements—COSMOS 2005 Experiment in the Bay of Biscay. Journal of Atmospheric and Oceanic Technology, 2007, 24, 1643-1654.	1.3	17
107	Vertical variability of Sea Surface Salinity and influence on L-band brightness temperature. , 2007, ,		0
108	Issues About Retrieving Sea Surface Salinity in Coastal Areas From SMOS Data. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 2061-2072.	6.3	35

#	Article	IF	CITATIONS
109	ARGO Upper Salinity Measurements: Perspectives for L-Band Radiometers Calibration and Retrieved Sea Surface Salinity Validation. IEEE Geoscience and Remote Sensing Letters, 2006, 3, 202-206.	3.1	33
110	An Iterative Convergence Algorithm to Retrieve Sea Surface Salinity from SMOS L-band Radiometric Measurements. , 2006, , .		7
111	Absolute Calibration of Radar Altimeters: Consistency with Electromagnetic Modeling. Journal of Atmospheric and Oceanic Technology, 2005, 22, 771-781.	1.3	7
112	Variability of the net air–sea CO2flux inferred from shipboard and satellite measurements in the Southern Ocean south of Tasmania and New Zealand. Journal of Geophysical Research, 2005, 110, .	3.3	30
113	The WISE 2000 and 2001 field experiments in support of the SMOS mission: sea surface L-band brightness temperature observations and their application to sea surface salinity retrieval. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42, 804-823.	6.3	132
114	Wind speed effect on L-band brightness temperature inferred from EuroSTARRS and WISE 2001 field experiments. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42, 2206-2213.	6.3	38
115	Sea surface emissivity at L-band: results of the WInd and Salinity Experiments WISE 2000 and 2001 and preliminary results from FROG 2003. , 2004, , .		1
116	Surface Salinity Retrieved from SMOS Measurements over the Global Ocean: Imprecisions Due to Sea Surface Roughness and Temperature Uncertainties. Journal of Atmospheric and Oceanic Technology, 2004, 21, 1432-1447.	1.3	50
117	L-band sea surface emissivity: Preliminary results of the WISE-2000 campaign and its application to salinity retrieval in the SMOS mission. Radio Science, 2003, 38, n/a-n/a.	1.6	36
118	Issues concerning the sea emissivity modeling at L band for retrieving surface salinity. Radio Science, 2003, 38, n/a-n/a.	1.6	70
119	Selecting an optimal configuration for the Soil Moisture and Ocean Salinity mission. Radio Science, 2003, 38, n/a-n/a.	1.6	38
120	Seasonal and interannual CO2fluxes for the central and eastern equatorial Pacific Ocean as determined from fCO2-SST relationships. Journal of Geophysical Research, 2003, 108, .	3.3	48
121	Influence of sea surface emissivity model parameters at L-band for the estimation of salinity. International Journal of Remote Sensing, 2002, 23, 5117-5122.	2.9	42
122	Influence of gas exchange coefficient parameterisation on seasonal and regional variability of CO2air-sea fluxes. Geophysical Research Letters, 2002, 29, 23-1-23-4.	4.0	28
123	Sea surface emissivity observations at L-band: first results of the Wind and Salinity Experiment WISE 2000. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40, 2117-2130.	6.3	40
124	Seasonal and interannual variability of CO2 in the equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 2443-2469.	1.4	176
125	Variability of surface waterfCO2during seasonal upwelling in the equatorial Atlantic Ocean as observed by a drifting buoy. Journal of Geophysical Research, 2001, 106, 9241-9253.	3.3	21
126	Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Global Biogeochemical Cycles, 2001, 15, 43-60.	4.9	274

#	Article	IF	CITATIONS
127	In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 2000, 14, 373-387.	4.9	1,177
128	Satellite sea surface temperature: a powerful tool for interpreting in situ pCO2 measurements in the equatorial Pacific Ocean. Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 490-508.	1.6	42
129	Air-sea CO2 flux variability in the equatorial Pacific Ocean near 100oW. Tellus, Series B: Chemical and Physical Meteorology, 1999, 51, 734-747.	1.6	8
130	Estimating the interannual variability of the air-sea CO2 flux in the east equatorial Pacific. Physics and Chemistry of the Earth, 1999, 24, 405-410.	0.3	0
131	Possible consequences of the chemical enhancement effect for air-sea CO2 flux estimates. Physics and Chemistry of the Earth, 1999, 24, 411-416.	0.3	4
132	Comparison of NSCAT, ERS 2 active microwave instrument, special sensor microwave imager, and Carbon Interface Ocean Atmosphere buoy wind speed: Consequences for the air-sea CO2exchange coefficient. Journal of Geophysical Research, 1999, 104, 11375-11392.	3.3	14
133	Long-term variability of the air-sea CO2exchange coefficient: Consequences for the CO2fluxes in the equatorial Pacific Ocean. Global Biogeochemical Cycles, 1997, 11, 453-470.	4.9	27
134	Consistency of Geosat, SSM/I, andERS-1Global Surface Wind Speeds—Comparison with In Situ Data. Journal of Atmospheric and Oceanic Technology, 1996, 13, 183-197.	1.3	40
135	Comparison of ECMWF and satellite ocean wind speeds from 1985 to 1992. International Journal of Remote Sensing, 1996, 17, 2897-2913.	2.9	17
136	CO2 exchange at the air-sea interface: Time and space variability. Advances in Space Research, 1991, 11, 77-85.	2.6	7
137	Intrinsic error in the air-sea CO2 exchange coefficient resulting from the use of satellite wind speeds. Tellus, Series B: Chemical and Physical Meteorology, 1991, 43, 236-246.	1.6	12
138	Seasonal variation of the CO2 exchange coefficient over the global ocean using satellite wind speed measurements. Tellus, Series B: Chemical and Physical Meteorology, 1991, 43, 247-255.	1.6	21
139	Seasat scatterometer versus scanning multichannel microwave radiometer wind speeds: A comparison on a global scale. Journal of Geophysical Research, 1990, 95, 22275-22288.	3.3	11
140	Sea surface emissivity observations at L-band: first preliminary results of the WInd and Salinity Experiment WISE-2000. , 0, , .		4
141	Sea state influence on L-band emissivity in various fetch conditions. , 0, , .		0
142	Errors on surface salinity retrieved from SMOS measurements over global ocean. , 0, , .		2
143	Uncertainties on salinity retrieved from SMOS measurements over global ocean. , 0, , .		2