
Wendy Gilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9580023/publications.pdf Version: 2024-02-01

WENDY CUREDT

#	Article	IF	CITATIONS
1	Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature, 2014, 515, 143-146.	13.7	800
2	Messenger RNA modifications: Form, distribution, and function. Science, 2016, 352, 1408-1412.	6.0	479
3	Cap-Independent Translation Is Required for Starvation-Induced Differentiation in Yeast. Science, 2007, 317, 1224-1227.	6.0	194
4	Loss of a Conserved tRNA Anticodon Modification Perturbs Cellular Signaling. PLoS Genetics, 2013, 9, e1003675.	1.5	181
5	Loss-of-function mutations in the RNA biogenesis factor <i>NAF1</i> predispose to pulmonary fibrosis–emphysema. Science Translational Medicine, 2016, 8, 351ra107.	5.8	168
6	Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing. Genome Research, 2013, 23, 977-987.	2.4	152
7	Regulated Formation of an Amyloid-like Translational Repressor Governs Gametogenesis. Cell, 2015, 163, 406-418.	13.5	148
8	Direct Link between RACK1 Function and Localization at the Ribosome In Vivo. Molecular and Cellular Biology, 2009, 29, 1626-1634.	1.1	136
9	Reconsidering Movement of Eukaryotic mRNAs between Polysomes and P Bodies. Molecular Cell, 2011, 44, 745-758.	4.5	119
10	Alternative transcription start site selection leads to large differences in translation activity in yeast. Rna, 2012, 18, 2299-2305.	1.6	111
11	Functional specialization of ribosomes?. Trends in Biochemical Sciences, 2011, 36, 127-132.	3.7	108
12	The ribosomal protein Asc1/RACK1 is required for efficient translation of short mRNAs. ELife, 2016, 5, .	2.8	107
13	Alternative Ways to Think about Cellular Internal Ribosome Entry. Journal of Biological Chemistry, 2010, 285, 29033-29038.	1.6	106
14	Regulation and Function of RNA Pseudouridylation in Human Cells. Annual Review of Genetics, 2020, 54, 309-336.	3.2	97
15	mRNA structure determines modification by pseudouridine synthase 1. Nature Chemical Biology, 2019, 15, 966-974.	3.9	93
16	Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis. Nature Medicine, 2019, 25, 1873-1884.	15.2	76
17	Restriction of SARS-CoV-2 replication by targeting programmed â^1 ribosomal frameshifting. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	75
18	Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Molecular Cell, 2022, 82, 645-659.e9.	4.5	75

Wendy Gilbert

#	Article	IF	CITATIONS
19	A <i>trans</i> -Dominant Form of Gag Restricts Ty1 Retrotransposition and Mediates Copy Number Control. Journal of Virology, 2015, 89, 3922-3938.	1.5	72
20	Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. PLoS Biology, 2020, 18, e3000780.	2.6	56
21	mRNA length-sensing in eukaryotic translation: reconsidering the "closed loop―and its implications for translational control. Current Genetics, 2017, 63, 613-620.	0.8	51
22	Pseudo-Seq. Methods in Enzymology, 2015, 560, 219-245.	0.4	48
23	Mutations in Nonessential elF3k and elF3l Genes Confer Lifespan Extension and Enhanced Resistance to ER Stress in Caenorhabditis elegans. PLoS Genetics, 2016, 12, e1006326.	1.5	37
24	Identification of new branch points and unconventional introns in <i>Saccharomyces cerevisiae</i> . Rna, 2016, 22, 1522-1534.	1.6	32
25	Translation initiation factor elF4G1 preferentially binds yeast transcript leaders containing conserved oligo-uridine motifs. Rna, 2017, 23, 1365-1375.	1.6	32
26	Lso2 is a conserved ribosome-bound protein required for translational recovery in yeast. PLoS Biology, 2018, 16, e2005903.	2.6	31
27	Protein kinase A regulates gene-specific translational adaptation in differentiating yeast. Rna, 2014, 20, 912-922.	1.6	25
28	Transcriptome-wide mapping reveals a diverse dihydrouridine landscape including mRNA. PLoS Biology, 2022, 20, e3001622.	2.6	25
29	Preâ€mRNA modifications and their role in nuclear processing. Quantitative Biology, 2018, 6, 210-227.	0.3	22
30	Direct analysis of ribosome targeting illuminates thousand-fold regulation of translation initiation. Cell Systems, 2022, 13, 256-264.e3.	2.9	20
31	Transcriptomeâ€Wide Identification of Pseudouridine Modifications Using Pseudoâ€seq. Current Protocols in Molecular Biology, 2015, 112, 4.25.1-4.25.24.	2.9	15
32	Quantitative Comparisons of Translation Activity by Ribosome Profiling with Internal Standards. Methods in Molecular Biology, 2021, 2252, 127-149.	0.4	5
33	Investigating Pseudouridylation Mechanisms by High-Throughput in Vitro RNA Pseudouridylation and Sequencing. Methods in Molecular Biology, 2021, 2298, 379-397.	0.4	2
34	Pseudouridine site assignment by high-throughput in vitro RNA pseudouridylation and sequencing. Methods in Enzymology, 2021, 658, 277-310.	0.4	1
35	Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. , 2020, 18, e3000780.		0
36	Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. , 2020, 18, e3000780.		0

#	Article	IF	CITATIONS
37	Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. , 2020, 18, e3000780.		0
38	Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. , 2020, 18, e3000780.		0
39	Creative approaches to perform an inclusive faculty search. FASEB Journal, 2022, 36, .	0.2	Ο