
Markus Bill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/957996/publications.pdf Version: 2024-02-01

MADKIIS RILI

#	Article	IF	CITATIONS
1	Experimental determination of hydrogen isotope exchange rates between methane and water under hydrothermal conditions. Geochimica Et Cosmochimica Acta, 2022, 329, 231-255.	3.9	10
2	Variability of Snow and Rainfall Partitioning Into Evapotranspiration and Summer Runoff Across Nine Mountainous Catchments. Geophysical Research Letters, 2022, 49, .	4.0	6
3	Modeling the Impact of Riparian Hollows on River Corridor Nitrogen Exports. Frontiers in Water, 2021, 3, .	2.3	15
4	Bedrock weathering contributes to subsurface reactive nitrogen and nitrous oxide emissions. Nature Geoscience, 2021, 14, 217-224.	12.9	18
5	Experimental and theoretical determinations of hydrogen isotopic equilibrium in the system CH4H2H2O from 3 to 200â€ ⁻ °C. Geochimica Et Cosmochimica Acta, 2021, 314, 223-269.	3.9	23
6	Conservative transport of dissolved sulfate across the Rio Madre de Dios floodplain in Peru. Geology, 2021, 49, 1064-1068.	4.4	9
7	Soil organic matter is principally root derived in an Ultisol under oak forest. Geoderma, 2021, 403, 115385.	5.1	6
8	Integrating airborne remote sensing and field campaigns for ecology and Earth system science. Methods in Ecology and Evolution, 2020, 11, 1492-1508.	5.2	33
9	The Snowmelt Niche Differentiates Three Microbial Life Strategies That Influence Soil Nitrogen Availability During and After Winter. Frontiers in Microbiology, 2020, 11, 871.	3.5	32
10	Shale as a Source of Organic Carbon in Floodplain Sediments of a Mountainous Watershed. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005419.	3.0	14
11	Mobility, Chemistry, and Prevalence of Shale-Derived Organic Carbon in an Alluvial Floodplain. , 2020, , .		0
12	An Experimental and Theoretical Calibration of CH ₄ -H ₂ -H ₂ O Hydrogen Isotopic Equilibrium from 3-200℃. , 2020, , .		0
13	An Isotopic and Mass Balance Framework for Sulfate Redox Processes from the Andes Mountains to Amazon Floodplain. , 2020, , .		0
14	Geochemical Controls on Release and Speciation of Fe(II) and Mn(II) From Hyporheic Sediments of East River, Colorado. Frontiers in Water, 2020, 2, .	2.3	7
15	Depth―and Timeâ€Resolved Distributions of Snowmeltâ€Driven Hillslope Subsurface Flow and Transport and Their Contributions to Surface Waters. Water Resources Research, 2019, 55, 9474-9499.	4.2	25
16	Evidence for Microbial Mediated NO3â^' Cycling Within Floodplain Sediments During Groundwater Fluctuations. Frontiers in Earth Science, 2019, 7, .	1.8	6
17	Use of carbon stable isotopes to monitor biostimulation and electron donor fate in chromium-contaminated groundwater. Chemosphere, 2019, 235, 440-446.	8.2	7
18	Gut anatomical properties and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nature Microbiology, 2019, 4, 864-875.	13.3	68

Markus Bill

#	Article	IF	CITATIONS
19	Stimulation of anaerobic organic matter decomposition by subsurface organic N addition in tundra soils. Soil Biology and Biochemistry, 2019, 130, 195-204.	8.8	13
20	Method for Controlling Temperature Profiles and Water Table Depths in Laboratory Sediment Columns. Vadose Zone Journal, 2018, 17, 1-7.	2.2	2
21	Microbial Sulfate Reduction and Perchlorate Inhibition in a Novel Mesoscale Tank Experiment. Energy & Fuels, 2018, 32, 12049-12065.	5.1	5
22	Deep Unsaturated Zone Contributions to Carbon Cycling in Semiarid Environments. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3045-3054.	3.0	15
23	Large carbon isotope variability during methanogenesis under alkaline conditions. Geochimica Et Cosmochimica Acta, 2018, 237, 18-31.	3.9	39
24	Carbon-isotope stratigraphy and pelagic biofacies of the Middle–Upper Jurassic transition in the Tethys–Central Atlantic connection. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 507, 129-144.	2.3	8
25	Factors controlling seasonal groundwater and solute flux from snowâ€dominated basins. Hydrological Processes, 2018, 32, 2187-2202.	2.6	63
26	STIMULATION OF ANAEROBIC ORGANIC MATTER DEGRADATION BY NITROGEN ADDITION IN TUNDRA SOILS. , 2018, , .		0
27	Reoxidation of Chromium(III) Products Formed under Different Biogeochemical Regimes. Environmental Science & Technology, 2017, 51, 4918-4927.	10.0	60
28	Integration of C1 and C2 Metabolism in Trees. International Journal of Molecular Sciences, 2017, 18, 2045.	4.1	25
29	Metatranscriptomic Analysis Reveals Unexpectedly Diverse Microbial Metabolism in a Biogeochemical Hot Spot in an Alluvial Aquifer. Frontiers in Microbiology, 2017, 8, 40.	3.5	14
30	Deep Vadose Zone Respiration Contributions to Carbon Dioxide Fluxes from a Semiarid Floodplain. Vadose Zone Journal, 2016, 15, 1-14.	2.2	24
31	Identification and characterization of high methane-emitting abandoned oil and gas wells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13636-13641.	7.1	143
32	lsotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra. Global Change Biology, 2016, 22, 3487-3502.	9.5	45
33	Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment. Biogeochemistry, 2016, 127, 367-396.	3.5	76
34	RELATIVE CARBON FLUXES FROM SOIL, DEEP VADOSE ZONE AND GROUNDWATER TO ATMOSPHERE AND RIVER OF A SEMI-ARID FLOODPLAIN IN COLORADO. , 2016, , .		0
35	Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs. Frontiers in Microbiology, 2014, 5, 409.	3.5	37
36	Incomplete Wood–Ljungdahl pathway facilitates one-carbon metabolism in organohalide-respiring <i>Dehalococcoides mccartyi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6419-6424.	7.1	104

Markus Bill

#	Article	IF	CITATIONS
37	A large column analog experiment of stable isotope variations during reactive transport: II. Carbon mass balance, microbial community structure and predation. Geochimica Et Cosmochimica Acta, 2014, 124, 394-409.	3.9	17
38	Geologic CO2 input into groundwater and the atmosphere, Soda Springs, ID, USA. Chemical Geology, 2013, 339, 61-70.	3.3	22
39	Effects of Varying Growth Conditions on Stable Carbon Isotope Fractionation of Trichloroethene (TCE) by <i>tce</i> A-containing <i>Dehalococcoides mccartyi</i> strains. Environmental Science & Technology, 2013, 47, 12342-12350.	10.0	18
40	Succession of Hydrocarbon-Degrading Bacteria in the Aftermath of the <i>Deepwater Horizon</i> Oil Spill in the Gulf of Mexico. Environmental Science & Technology, 2013, 47, 10860-10867.	10.0	344
41	The Toarcian in the Subbetic basin (southern Spain): Bio-events (ammonite and calcareous) Tj ETQq1 1 0.784314 2012, 342-343, 40-63.	rgBT /Ove 2.3	rlock 10 Tf 5 43
42	Deepâ€sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environmental Microbiology, 2012, 14, 2405-2416.	3.8	275
43	DYNAMICS OF A PALEOECOSYSTEM REEF ASSOCIATED WITH OCEANIC CHANGE IN CARBONATE SEDIMENTARY REGIME AND CARBON CYCLING (OXFORDIAN, SWISS JURA). Palaios, 2011, 26, 197-211.	1.3	4
44	Application of fungistatics in soil reduces N uptake by an arctic ericoid shrub (<i>Vaccinium) Tj ETQq0 0 0 rgBT /O</i>	verlock 10 1.9) Tf 50 462 1
45	Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria. Science, 2010, 330, 204-208.	12.6	1,109
46	Field Evidence for Co-Metabolism of Trichloroethene Stimulated by Addition of Electron Donor to Groundwater. Environmental Science & amp; Technology, 2010, 44, 4697-4704.	10.0	55
47	Aalenian carbon-isotope stratigraphy: Calibration with ammonite, radiolarian and nannofossil events in the Western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 267, 115-137.	2.3	45
48	Carbon–isotope stratigraphy and ammonite faunal turnover for the Middle Jurassic in the Southern Iberian palaeomargin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239, 311-333.	2.3	74
49	Bathonian radiolarians from an ophiolitic melange of the Alpine Tethys (Gets Nappe, Swiss-French) Tj ETQq1 1 0.7	84314 rgE 1.0	3T /Overlock 48
50	Stable carbon isotope composition of atmospheric methyl bromide. Geophysical Research Letters, 2004, 31, .	4.0	22
51	Carbon isotope fractionation during reductive dechlorination of TCE in batch experiments with iron samples from reactive barriers. Journal of Contaminant Hydrology, 2003, 66, 25-37.	3.3	35
52	Carbon Isotope Fractionation during Aerobic Biodegradation of Trichloroethene by Burkholderia cepacia G4: a Tool To Map Degradation Mechanisms. Applied and Environmental Microbiology, 2002, 68, 1728-1734.	3.1	60
53	Carbon isotope ratios of methyl bromide and methyl chloride emitted from a coastal salt marsh. Geophysical Research Letters, 2002, 29, 4-1.	4.0	48

54 Title is missing!. Biogeochemistry, 2002, 60, 141-161.

3.5 43

#	Article	IF	CITATIONS
55	Carbon isotope fractionation of methyl bromideduring agricultural soil fumigations. Biogeochemistry, 2002, 60, 181-190.	3.5	12
56	Carbon isotope fractionation during abiotic reductive dehalogenation of trichloroethene (TCE). Chemosphere, 2001, 44, 1281-1286.	8.2	41
57	Radiolarite ages in Alpine-Mediterranean ophiolites: Constraints on the oceanic spreading and the Tethys-Atlantic connection. Bulletin of the Geological Society of America, 2001, 113, 129-143.	3.3	151