
Duojun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of water on the electrical conductivity of olivine. Nature, 2006, 443, 977-980.	27.8	344
2	Electrical conductivity of amphibole-bearing rocks: influence of dehydration. Contributions To Mineralogy and Petrology, 2012, 164, 17-25.	3.1	71
3	The electrical conductivity of upper-mantle rocks: water content in the upper mantle. Physics and Chemistry of Minerals, 2008, 35, 157-162.	0.8	36
4	Electrical conductivity of talc aggregates at 0.5ÂGPa: influence of dehydration. Physics and Chemistry of Minerals, 2013, 40, 11-17.	0.8	26
5	Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature. Journal of Geophysical Research, 2010, 115, .	3.3	23
6	High-temperature dehydration of talc: a kinetics study using <i>in situ</i> X-ray powder diffraction. Phase Transitions, 2015, 88, 560-566.	1.3	15
7	Electrical conductivity of tremolite under high temperature and pressure: implications for the high-conductivity anomalies in the Earth and Venus. Contributions To Mineralogy and Petrology, 2020, 175, 1.	3.1	15
8	Constraints from the dehydration of antigorite on high-conductivity anomalies in subduction zones. Scientific Reports, 2017, 7, 16893.	3.3	12
9	Anomalous Sound Velocities of Antigorite at High Pressure and Implications for Detecting Serpentinization at Mantle Wedges. Geophysical Research Letters, 2019, 46, 5153-5160.	4.0	10
10	Electrical Conductivity of Talc Dehydration at High Pressures and Temperatures: Implications for Highâ€Conductivity Anomalies in Subduction Zones. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020091.	3.4	10
11	Enhanced visibility of subduction slabs by the formation of dense hydrous phase A. Geophysical Research Letters, 2021, 48, e2021GL095487.	4.0	8
12	Thermal Conductivity and Thermal Diffusivity of Talc at High Temperature and Pressure With Implications for the Thermal Structure of Subduction Zones. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	7
13	Dehydration Kinetics of Natural Talc. Canadian Mineralogist, 2015, 53, 643-651.	1.0	6
14	Mantle Wedge Water Contents Estimated From Ultrasonic Laboratory Measurements of Olivineâ€Antigorite Aggregates. Geophysical Research Letters, 2022, 49, .	4.0	6