
Volker Presser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electro-assisted removal of polar and ionic organic compounds from water using activated carbon felts. Chemical Engineering Journal, 2022, 433, 133544.	6.6	11
2	Particle size distribution influence on capacitive deionization: Insights for electrode preparation. Desalination, 2022, 525, 115503.	4.0	17
3	Editorial introducing <i>Energy Advances</i> . Energy Advances, 2022, 1, 7-8.	1.4	0
4	lonophobicity of carbon sub-nanometer pores enables efficient desalination at high salinity. Cell Reports Physical Science, 2022, 3, 100689.	2.8	7
5	Timeâ€Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution. Advanced Sustainable Systems, 2022, 6, .	2.7	4
6	Emerging, hydrogen-driven electrochemical water purification. Electrochemistry Communications, 2022, 136, 107211.	2.3	14
7	Design of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 10569-10585.	5.2	12
8	Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nature Energy, 2022, 7, 222-228.	19.8	130
9	Layered Nanoâ€Mosaic of Niobium Disulfide Heterostructures by Direct Sulfidation of Niobium Carbide MXenes for Hydrogen Evolution. Advanced Materials Interfaces, 2022, 9, .	1.9	6
10	Graphene Acid for Lithiumâ€lon Batteries—Carboxylation Boosts Storage Capacity in Graphene. Advanced Energy Materials, 2022, 12, .	10.2	25
11	Spray-dried pneumococcal membrane vesicles are promising candidates for pulmonary immunization. International Journal of Pharmaceutics, 2022, 621, 121794.	2.6	6
12	Recent advances in wastewater treatment using semiconductor photocatalysts. Current Opinion in Green and Sustainable Chemistry, 2022, 36, 100644.	3.2	33
13	Layered Titanium Niobium Oxides Derived from Solid-Solution Ti–Nb Carbides (MXene) as Anode Materials for Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 8132-8142.	2.5	9
14	(Digital Presentation) Design of High-Performance Antimony / MXene Hybrid Electrodes for Sodium-Ion Batteries. ECS Meeting Abstracts, 2022, MA2022-01, 97-97.	0.0	0
15	Monitoring the thermally induced transition from sp3-hybridized into sp2-hybridized carbons. Carbon, 2021, 172, 214-227.	5.4	41
16	Dye‣oaded Mechanochromic and pHâ€Responsive Elastomeric Opal Films. Macromolecular Rapid Communications, 2021, 42, e2000557.	2.0	7
17	Antimony alloying electrode for high-performance sodium removal: how to use a battery material not stable in aqueous media for saline water remediation. Journal of Materials Chemistry A, 2021, 9, 585-596.	5.2	11
18	Effect of pore geometry on ultra-densified hydrogen in microporous carbons. Carbon, 2021, 173, 968-979.	5.4	25

#	Article	IF	CITATIONS
19	Molecular Understanding of Charge Storage in MoS ₂ Supercapacitors with Ionic Liquids. Energy and Environmental Materials, 2021, 4, 631-637.	7.3	20
20	Titanium Niobium Oxide Ti ₂ Nb ₁₀ O ₂₉ /Carbon Hybrid Electrodes Derived by Mechanochemically Synthesized Carbide for Highâ€Performance Lithiumâ€Ion Batteries. ChemSusChem, 2021, 14, 398-407.	3.6	15
21	Hybrid carbon spherogels: carbon encapsulation of nano-titania. Chemical Communications, 2021, 57, 3905-3908.	2.2	7
22	Structural and chemical characterization of MoO ₂ /MoS ₂ triple-hybrid materials using electron microscopy in up to three dimensions. Nanoscale Advances, 2021, 3, 1067-1076.	2.2	2
23	Electrochemical lithium recovery with lithium iron phosphate: what causes performance degradation and how can we improve the stability?. Sustainable Energy and Fuels, 2021, 5, 3124-3133.	2.5	14
24	Rings and Chains: Synthesis and Characterization of Polyferrocenylmethylene. Macromolecular Rapid Communications, 2021, 42, 2000738.	2.0	4
25	Superior Wear-Resistance of Ti ₃ C ₂ T _{<i>x</i>} Multilayer Coatings. ACS Nano, 2021, 15, 8216-8224.	7.3	125
26	Electrocatalytic fuel cell desalination for continuous energy and freshwater generation. Cell Reports Physical Science, 2021, 2, 100416.	2.8	12
27	Redox-Responsive 2-Aminoanthraquinone Core–Shell Particles for Structural Colors and Carbon Capture. ACS Applied Polymer Materials, 2021, 3, 4651-4660.	2.0	7
28	In Situ Investigation of Expansion during the Lithiation of Pillared MXenes with Ultralarge Interlayer Distance. Journal of Physical Chemistry C, 2021, 125, 20791-20797.	1.5	0
29	Hydration shell energy barrier differences of sub-nanometer carbon pores enable ion sieving and selective ion removal. Chemical Engineering Journal, 2021, 419, 129438.	6.6	22
30	From capacitive deionization to desalination batteries and desalination fuel cells. Current Opinion in Electrochemistry, 2021, 29, 100758.	2.5	14
31	Three-Dimensional Cobalt Hydroxide Hollow Cube/Vertical Nanosheets with High Desalination Capacity and Long-Term Performance Stability in Capacitive Deionization. Research, 2021, 2021, 9754145.	2.8	6
32	Highâ€Entropy Energy Materials in the Age of Big Data: A Critical Guide to Nextâ€Generation Synthesis and Applications. Advanced Energy Materials, 2021, 11, 2102355.	10.2	37
33	Porous Mixed-Metal Oxide Li-Ion Battery Electrodes by Shear-Induced Co-assembly of Precursors and Tailored Polymer Particles. ACS Applied Materials & Interfaces, 2021, 13, 61166-61179.	4.0	12
34	Electrospun vanadium sulfide / carbon hybrid fibers obtained via one-step thermal sulfidation for use as lithium-ion battery electrodes. Journal of Power Sources, 2020, 450, 227674.	4.0	19
35	Permselective ion electrosorption of subnanometer pores at high molar strength enables capacitive deionization of saline water. Sustainable Energy and Fuels, 2020, 4, 1285-1295.	2.5	34
36	Pinning ultrasmall greigite nanoparticles on graphene for effective transition-metal-sulfide supercapacitors in an ionic liquid electrolyte. Journal of Materials Chemistry A, 2020, 8, 25716-25726.	5.2	14

#	Article	IF	CITATIONS
37	How to speed up ion transport in nanopores. Nature Communications, 2020, 11, 6085.	5.8	57
38	Ionic liquid-based synthesis of MXene. Chemical Communications, 2020, 56, 11082-11085.	2.2	87
39	Hybrid Anodes of Lithium Titanium Oxide and Carbon Onions for Lithiumâ€lon and Sodiumâ€lon Energy Storage. Energy Technology, 2020, 8, 2000679.	1.8	3
40	Persistent and reversible solid iodine electrodeposition in nanoporous carbons. Nature Communications, 2020, 11, 4838.	5.8	52
41	Combining Batteryâ€Type and Pseudocapacitive Charge Storage in Ag/Ti ₃ C ₂ T <i>_x</i> MXene Electrode for Capturing Chloride Ions with High Capacitance and Fast Ion Transport. Advanced Science, 2020, 7, 2000621.	5.6	101
42	MXene/Activated-Carbon Hybrid Capacitive Deionization for Permselective Ion Removal at Low and High Salinity. ACS Applied Materials & amp; Interfaces, 2020, 12, 26013-26025.	4.0	91
43	Choosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion batteries. Journal of Materials Chemistry A, 2020, 8, 6092-6104.	5.2	35
44	High-performance ion removal via zinc–air desalination. Electrochemistry Communications, 2020, 115, 106713.	2.3	30
45	Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews, 2020, 120, 6738-6782.	23.0	1,020
46	Self-Sustained Visible-Light-Driven Electrochemical Redox Desalination. ACS Applied Materials & Interfaces, 2020, 12, 32788-32796.	4.0	35
47	Polymer ion-exchange membranes for capacitive deionization of aqueous media with low and high salt concentration. Desalination, 2020, 479, 114331.	4.0	54
48	Comparison of organic electrolytes at various temperatures for 2.8ÂV–Li-ion hybrid supercapacitors. Electrochimica Acta, 2020, 337, 135760.	2.6	15
49	lon Structure Transition Enhances Charging Dynamics in Subnanometer Pores. ACS Nano, 2020, 14, 2395-2403.	7.3	52
50	Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nature Reviews Materials, 2020, 5, 517-538.	23.3	360
51	Carbide-Derived Niobium Pentoxide with Enhanced Charge Storage Capacity for Use as a Lithium-Ion Battery Electrode. ACS Applied Energy Materials, 2020, 3, 4275-4285.	2.5	22
52	Dualâ€Zinc Electrode Electrochemical Desalination. ChemSusChem, 2020, 13, 2792-2798.	3.6	26
53	High voltage asymmetric hybrid supercapacitors using lithium- and sodium-containing ionic liquids. Energy Storage Materials, 2019, 16, 391-399.	9.5	54
54	Reversibly compressible and freestanding monolithic carbon spherogels. Carbon, 2019, 153, 189-195.	5.4	11

#	Article	IF	CITATIONS
55	Sodium ion removal by hydrated vanadyl phosphate for electrochemical water desalination. Journal of Materials Chemistry A, 2019, 7, 4175-4184.	5.2	46
56	Nanosized titanium niobium oxide/carbon electrodes for lithium-ion energy storage applications. Sustainable Energy and Fuels, 2019, 3, 1776-1789.	2.5	7
57	Comparing pore structure models of nanoporous carbons obtained from small angle X-ray scattering and gas adsorption. Carbon, 2019, 152, 416-423.	5.4	28
58	Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater. RSC Advances, 2019, 9, 14849-14858.	1.7	64
59	High Electrochemical Seawater Desalination Performance Enabled by an Iodide Redox Electrolyte Paired with a Sodium Superionic Conductor. ACS Sustainable Chemistry and Engineering, 2019, 7, 10132-10142.	3.2	32
60	Reduced Faradaic Contributions and Fast Charging of Nanoporous Carbon Electrodes in a Concentrated Sodium Nitrate Aqueous Electrolyte for Supercapacitors. Energy Technology, 2019, 7, 1900430.	1.8	20
61	Understanding Interlayer Deprotonation of Hydrogen Titanium Oxide for High-Power Electrochemical Energy Storage. ACS Applied Energy Materials, 2019, 2, 3633-3641.	2.5	13
62	Gyroidal Niobium Sulfide/Carbon Hybrid Monoliths for Electrochemical Energy Storage. Batteries and Supercaps, 2019, 2, 668-672.	2.4	8
63	Effect of Pore Size on the Ion Electrosorption and Hydrogen/Deuterium Electrosorption Using Sodium Chloride in H ₂ O and D ₂ O. Journal of the Electrochemical Society, 2019, 166, A4158-A4167.	1.3	8
64	Vanadium (III) Oxide/Carbon Core/Shell Hybrids as an Anode for Lithiumâ€Ion Batteries. Batteries and Supercaps, 2019, 2, 74-82.	2.4	10
65	Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice. Progress in Materials Science, 2019, 101, 46-89.	16.0	111
66	Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithiumâ€ion Battery Anodes with High Areal and Volumetric Capacity. Chemistry - A European Journal, 2018, 24, 6358-6363.	1.7	27
67	Systematic comparison of force fields for molecular dynamic simulation of Au(111)/Ionic liquid interfaces. Fluid Phase Equilibria, 2018, 463, 106-113.	1.4	23
68	Valenceâ€Tuned Lithium Titanate Nanopowder for Highâ€Rate Electrochemical Energy Storage. Batteries and Supercaps, 2018, 1, 11-26.	2.4	17
69	Design of Carbon/Metal Oxide Hybrids for Electrochemical Energy Storage. Chemistry - A European Journal, 2018, 24, 12143-12153.	1.7	37
70	Two-Dimensional Molybdenum Carbide (MXene) with Divacancy Ordering for Brackish and Seawater Desalination via Cation and Anion Intercalation. ACS Sustainable Chemistry and Engineering, 2018, 6, 3739-3747.	3.2	183
71	Water Desalination with Energy Storage Electrode Materials. Joule, 2018, 2, 10-15.	11.7	217
72	Nitrogen-containing novolac-derived carbon beads as electrode material for supercapacitors. Carbon, 2018, 132, 220-231.	5.4	75

#	Article	IF	CITATIONS
73	In-situ nanodiamond to carbon onion transformation in metal matrix composites. Carbon, 2018, 129, 631-636.	5.4	21
74	Electrodeposition of hydrated vanadium pentoxide on nanoporous carbon cloth for hybrid energy storage. Sustainable Energy and Fuels, 2018, 2, 577-588.	2.5	30
75	Potentialâ€Dependent, Switchable Ion Selectivity in Aqueous Media Using Titanium Disulfide. ChemSusChem, 2018, 11, 2091-2100.	3.6	33
76	Fast and stable lithium-ion storage kinetics of anatase titanium dioxide/carbon onion hybrid electrodes. Journal of Materials Chemistry A, 2018, 6, 9480-9488.	5.2	43
77	Charge and Potential Balancing for Optimized Capacitive Deionization Using Ligninâ€Derived, Lowâ€Cost Activated Carbon Electrodes. ChemSusChem, 2018, 11, 2101-2113.	3.6	68
78	Continuous silicon oxycarbide fiber mats with tin nanoparticles as a high capacity anode for lithium-ion batteries. Sustainable Energy and Fuels, 2018, 2, 215-228.	2.5	32
79	Carbon onion/sulfur hybrid cathodes <i>via</i> inverse vulcanization for lithium–sulfur batteries. Sustainable Energy and Fuels, 2018, 2, 133-146.	2.5	36
80	Binderâ€Free Hybrid Titanium–Niobium Oxide/Carbon Nanofiber Mats for Lithiumâ€Ion Battery Electrodes. ChemSusChem, 2018, 11, 159-170.	3.6	30
81	Semi-continuous capacitive deionization using multi-channel flow stream and ion exchange membranes. Desalination, 2018, 425, 104-110.	4.0	51
82	Ordered Mesoporous Carbons with High Micropore Content and Tunable Structure Prepared by Combined Hard and Salt Templating as Electrode Materials in Electric Double‣ayer Capacitors. Advanced Sustainable Systems, 2018, 2, 1700128.	2.7	46
83	Salt concentration and charging velocity determine ion charge storage mechanism in nanoporous supercapacitors. Nature Communications, 2018, 9, 4145.	5.8	85
84	In Situ Tracking of Partial Sodium Desolvation of Materials with Capacitive, Pseudocapacitive, and Battery-like Charge/Discharge Behavior in Aqueous Electrolytes. Langmuir, 2018, 34, 13132-13143.	1.6	20
85	Frontispiece: Design of Carbon/Metal Oxide Hybrids for Electrochemical Energy Storage. Chemistry - A European Journal, 2018, 24, .	1.7	0
86	Gyroidal Porous Carbon Activated with NH ₃ or CO ₂ as Lithiumâ^'Sulfur Battery Cathodes. Batteries and Supercaps, 2018, 1, 83-94.	2.4	11
87	Atomic Layer-Deposited Molybdenum Oxide/Carbon Nanotube Hybrid Electrodes: The Influence of Crystal Structure on Lithium-Ion Capacitor Performance. ACS Applied Materials & Interfaces, 2018, 10, 18675-18684.	4.0	37
88	Mechanochemical synthesis of porous carbon at room temperature with a highly ordered sp2 microstructure. Carbon, 2018, 139, 325-333.	5.4	36
89	Valence-Tuned Lithium Titanate Nanopowder for High-Rate Electrochemical Energy Storage. Batteries and Supercaps, 2018, 1, 2-2.	2.4	1
90	Confined Redox Reactions of Iodide in Carbon Nanopores for Fast and Energyâ€Efficient Desalination of Brackish Water and Seawater. ChemSusChem, 2018, 11, 3460-3472.	3.6	46

#	Article	IF	CITATIONS
91	Electrospun Hybrid Vanadium Oxide/Carbon Fiber Mats for Lithium- and Sodium-Ion Battery Electrodes. ACS Applied Energy Materials, 2018, 1, 3790-3801.	2.5	21
92	Influence of Nitrogenâ€Doping for Carbideâ€Derived Carbons on the Supercapacitor Performance in an Organic Electrolyte and an Ionic Liquid. Batteries and Supercaps, 2018, 1, 135-148.	2.4	17
93	Carbon aerogels with improved flexibility by sphere templating. RSC Advances, 2018, 8, 27326-27331.	1.7	13
94	Silicon Oxycarbide Beads from Continuously Produced Polysilsesquioxane as Stable Anode Material for Lithium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 2961-2970.	2.5	31
95	Enhanced desalination via cell voltage extension of membrane capacitive deionization using an aqueous/organic bi-electrolyte. Desalination, 2018, 443, 56-61.	4.0	39
96	Vanadia–titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storage. Journal of Materials Chemistry A, 2017, 5, 2792-2801.	5.2	19
97	Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nature Energy, 2017, 2, .	19.8	210
98	Asymmetric tin–vanadium redox electrolyte for hybrid energy storage with nanoporous carbon electrodes. Sustainable Energy and Fuels, 2017, 1, 299-307.	2.5	49
99	Hydrogen-treated, sub-micrometer carbon beads for fast capacitive deionization with high performance stability. Carbon, 2017, 117, 46-54.	5.4	50
100	Solventâ€Free Mechanochemical Synthesis of Nitrogenâ€Doped Nanoporous Carbon for Electrochemical Energy Storage. ChemSusChem, 2017, 10, 2416-2424.	3.6	109
101	Microporous novolac-derived carbon beads/sulfur hybrid cathode for lithium-sulfur batteries. Journal of Power Sources, 2017, 357, 198-208.	4.0	33
102	Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodes. Journal of Materials Chemistry A, 2017, 5, 13039-13051.	5.2	41
103	Nanoconfinement of redox reactions enables rapid zinc iodide energy storage with high efficiency. Journal of Materials Chemistry A, 2017, 5, 12520-12527.	5.2	80
104	Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water. Electrochimica Acta, 2017, 224, 314-328.	2.6	98
105	Carbon onion–sulfur hybrid cathodes for lithium–sulfur batteries. Sustainable Energy and Fuels, 2017, 1, 84-94.	2.5	34
106	Tailored Mesoporous Carbon/Vanadium Pentoxide Hybrid Electrodes for High Power Pseudocapacitive Lithium and Sodium Intercalation. Chemistry of Materials, 2017, 29, 8653-8662.	3.2	34
107	Quantitative Information about Electrosorption of Ionic Liquids in Carbon Nanopores from Electrochemical Dilatometry and Quartz Crystal Microbalance Measurements. Journal of Physical Chemistry C, 2017, 121, 19120-19128.	1.5	23
108	Carbide-derived carbon beads with tunable nanopores from continuously produced polysilsesquioxanes for supercapacitor electrodes. Sustainable Energy and Fuels, 2017, 1, 1588-1600.	2.5	35

#	Article	IF	CITATIONS
109	Concentrationâ€Gradient Multichannel Flowâ€Stream Membrane Capacitive Deionization Cell for High Desalination Capacity of Carbon Electrodes. ChemSusChem, 2017, 10, 4914-4920.	3.6	69
110	Pseudocapacitive Desalination of Brackish Water and Seawater with Vanadiumâ€Pentoxideâ€Decorated Multiwalled Carbon Nanotubes. ChemSusChem, 2017, 10, 3611-3623.	3.6	89
111	In Situ Multilength-Scale Tracking of Dimensional and Viscoelastic Changes in Composite Battery Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 27664-27675.	4.0	23
112	Titanium Disulfide: A Promising Low-Dimensional Electrode Material for Sodium Ion Intercalation for Seawater Desalination. Chemistry of Materials, 2017, 29, 9964-9973.	3.2	112
113	In situ multi-length scale approach to understand the mechanics of soft and rigid binder in composite lithium ion battery electrodes. Journal of Power Sources, 2017, 371, 162-166.	4.0	24
114	Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization. Carbon, 2017, 122, 329-335.	5.4	149
115	Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide. Journal of Materials Chemistry A, 2017, 5, 15640-15649.	5.2	167
116	Influence of carbon distribution on the electrochemical performance and stability of lithium titanate based energy storage devices. Electrochimica Acta, 2017, 247, 1006-1018.	2.6	29
117	In Situ Measurement of Electrosorption-Induced Deformation Reveals the Importance of Micropores in Hierarchical Carbons. ACS Applied Materials & amp; Interfaces, 2017, 9, 23319-23324.	4.0	29
118	Mechanochemistry-assisted synthesis of hierarchical porous carbons applied as supercapacitors. Beilstein Journal of Organic Chemistry, 2017, 13, 1332-1341.	1.3	20
119	A carbon nanopore model to quantify structure and kinetics of ion electrosorption with in situ small-angle X-ray scattering. Physical Chemistry Chemical Physics, 2017, 19, 15549-15561.	1.3	39
120	Highâ€Temperature Neutron Diffraction, Raman Spectroscopy, and Firstâ€Principles Calculations of Ti ₃ SnC ₂ and Ti ₂ SnC. Journal of the American Ceramic Society, 2016, 99, 2233-2242.	1.9	15
121	Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation. Journal of Power Sources, 2016, 326, 660-671.	4.0	115
122	Electrospinning and electrospraying of silicon oxycarbide-derived nanoporous carbon for supercapacitor electrodes. Journal of Power Sources, 2016, 313, 178-188.	4.0	53
123	Improved capacitive deionization performance of mixed hydrophobic/hydrophilic activated carbon electrodes. Journal of Physics Condensed Matter, 2016, 28, 114003.	0.7	61
124	Sputtering of sub-micrometer aluminum layers as compact, high-performance, light-weight current collector for supercapacitors. Journal of Power Sources, 2016, 329, 432-440.	4.0	10
125	High Performance Hybrid Energy Storage with Potassium Ferricyanide Redox Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 23676-23687.	4.0	123
126	Porous carbon as a quasi-reference electrode in aqueous electrolytes. Electrochimica Acta, 2016, 222, 1800-1805.	2.6	31

8

#	Article	IF	CITATIONS
127	Increase in Capacitance by Subnanometer Pores in Carbon. ACS Energy Letters, 2016, 1, 1262-1265.	8.8	173
128	Niobium carbide nanofibers as a versatile precursor for high power supercapacitor and high energy battery electrodes. Journal of Materials Chemistry A, 2016, 4, 16003-16016.	5.2	51
129	High performance stability of titania decorated carbon for desalination with capacitive deionization in oxygenated water. RSC Advances, 2016, 6, 106081-106089.	1.7	32
130	Influence of carbon substrate on the electrochemical performance of carbon/manganese oxide hybrids in aqueous and organic electrolytes. RSC Advances, 2016, 6, 107163-107179.	1.7	14
131	Electrochemical in Situ Tracking of Volumetric Changes in Two-Dimensional Metal Carbides (MXenes) in Ionic Liquids. ACS Applied Materials & Interfaces, 2016, 8, 32089-32093.	4.0	87
132	Carbon as Quasi-Reference Electrode in Unconventional Lithium-Salt Containing Electrolytes for Hybrid Battery/Supercapacitor Devices. Journal of the Electrochemical Society, 2016, 163, A2956-A2964.	1.3	28
133	Upcycling spent petroleum cracking catalyst: pulsed laser deposition of single-wall carbon nanotubes and silica nanowires. RSC Advances, 2016, 6, 72596-72606.	1.7	5
134	Vanadium pentoxide/carbide-derived carbon core–shell hybrid particles for high performance electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 18899-18909.	5.2	30
135	MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. Journal of Materials Chemistry A, 2016, 4, 18265-18271.	5.2	358
136	Tin/vanadium redox electrolyte for battery-like energy storage capacity combined with supercapacitor-like power handling. Energy and Environmental Science, 2016, 9, 3392-3398.	15.6	121
137	Capacitive deionization in organic solutions: case study using propylene carbonate. RSC Advances, 2016, 6, 5865-5870.	1.7	29
138	Performance evaluation of conductive additives for activated carbon supercapacitors in organic electrolyte. Electrochimica Acta, 2016, 191, 284-298.	2.6	62
139	Review: carbon onions for electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 3172-3196.	5.2	360
140	Quartz Crystal Microbalance with Dissipation Monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: A mini-review. Electrochemistry Communications, 2016, 67, 16-21.	2.3	76
141	Enhanced Electrochemical Energy Storage by Nanoscopic Decoration of Endohedral and Exohedral Carbon with Vanadium Oxide via Atomic Layer Deposition. Chemistry of Materials, 2016, 28, 2802-2813.	3.2	44
142	Use of Surfactants for Continuous Operation of Aqueous Electrochemical Flow Capacitors. Energy Technology, 2016, 4, 75-84.	1.8	38
143	Sub-micrometer Novolac-Derived Carbon Beads for High Performance Supercapacitors and Redox Electrolyte Energy Storage. ACS Applied Materials & Interfaces, 2016, 8, 9104-9115.	4.0	53
144	Novel <i>in situ</i> multiharmonic EQCM-D approach to characterize complex carbon pore architectures for capacitive deionization of brackish water. Journal of Physics Condensed Matter, 2016, 28, 114001.	0.7	23

#	Article	IF	CITATIONS
145	In situ hydrodynamic spectroscopy for structure characterization of porous energy storageAelectrodes. Nature Materials, 2016, 15, 570-575.	13.3	77
146	Dispersion analysis of carbon nanotubes, carbon onions, and nanodiamonds for their application as reinforcement phase in nickel metal matrix composites. RSC Advances, 2015, 5, 95149-95159.	1.7	72
147	Quinoneâ€Decorated Onionâ€Like Carbon/Carbon Fiber Hybrid Electrodes for Highâ€Rate Supercapacitor Applications. ChemElectroChem, 2015, 2, 1117-1127.	1.7	49
148	Capacitive Deionization using Biomassâ€based Microporous Saltâ€Templated Heteroatomâ€Doped Carbons. ChemSusChem, 2015, 8, 1823-1823.	3.6	75
149	Capacitive Deionization using Biomassâ€based Microporous Saltâ€Templated Heteroatomâ€Doped Carbons. ChemSusChem, 2015, 8, 1867-1874.	3.6	104
150	Nonâ€Invasive Inâ€Situ Dynamic Monitoring of Elastic Properties of Composite Battery Electrodes by EQCMâ€D. Angewandte Chemie, 2015, 127, 12530-12533.	1.6	5
151	Nonâ€Invasive Inâ€Situ Dynamic Monitoring of Elastic Properties of Composite Battery Electrodes by EQCMâ€D. Angewandte Chemie - International Edition, 2015, 54, 12353-12356.	7.2	31
152	Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering. Energy and Environmental Science, 2015, 8, 1725-1735.	15.6	126
153	Enhanced capacitance of nitrogen-doped hierarchically porous carbide-derived carbon in matched ionic liquids. Journal of Materials Chemistry A, 2015, 3, 18906-18912.	5.2	69
154	Comment on <i>Spongeâ€Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance</i> . Advanced Functional Materials, 2015, 25, 179-181.	7.8	23
155	Understanding structure and porosity of nanodiamond-derived carbon onions. Carbon, 2015, 84, 584-598.	5.4	118
156	Polyvinylpyrrolidone/polyvinyl butyral composite as a stable binder for castable supercapacitor electrodes in aqueous electrolytes. Journal of Power Sources, 2015, 279, 323-333.	4.0	51
157	Vacuum or flowing argon: What is the best synthesis atmosphere for nanodiamond-derived carbon onions for supercapacitor electrodes?. Carbon, 2015, 94, 507-517.	5.4	59
158	Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures. ACS Nano, 2015, 9, 8249-8254.	7.3	57
159	In situ tracking of defect healing and purification of single-wall carbon nanotubes with laser radiation by time-resolved Raman spectroscopy. RSC Advances, 2015, 5, 62149-62159.	1.7	19
160	Heat-to-current conversion of low-grade heat from a thermocapacitive cycle by supercapacitors. Energy and Environmental Science, 2015, 8, 2396-2401.	15.6	126
161	Emulsion soft templating of carbide-derived carbon nanospheres with controllable porosity for capacitive electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 17983-17990.	5.2	23
162	Water desalination via capacitive deionization: what is it and what can we expect from it?. Energy and Environmental Science, 2015, 8, 2296-2319.	15.6	1,273

#	Article	IF	CITATIONS
163	Electrospinning of ultrafine metal oxide/carbon and metal carbide/carbon nanocomposite fibers. RSC Advances, 2015, 5, 35683-35692.	1.7	35
164	New Insights into the Structure of Nanoporous Carbons from NMR, Raman, and Pair Distribution Function Analysis. Chemistry of Materials, 2015, 27, 6848-6857.	3.2	88
165	In situ neutron diffraction evidence for fully reversible dislocation motion in highly textured polycrystalline Ti2AlC samples. Acta Materialia, 2015, 98, 51-63.	3.8	27
166	A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessite-type manganese oxide nanohybrids. Journal of Materials Chemistry A, 2015, 3, 3480-3490.	5.2	93
167	In-situ and ex-situ measurements of thermal conductivity of supercapacitors. Energy, 2014, 78, 373-383.	4.5	18
168	In situmeasurements with CPC micro-actuators using SEM. , 2014, , .		0
169	Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes. Journal of Power Sources, 2014, 272, 1122-1133.	4.0	99
170	Thermal conductivity and temperature profiles in carbon electrodes for supercapacitors. Journal of Power Sources, 2014, 246, 160-166.	4.0	22
171	Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials, 2014, 26, 2219-2251.	11.1	2,152
172	Graphitization as a Universal Tool to Tailor the Potentialâ€Dependent Capacitance of Carbon Supercapacitors. Advanced Energy Materials, 2014, 4, 1400316.	10.2	201
173	Continuous operation of an electrochemical flow capacitor. Electrochemistry Communications, 2014, 48, 178-181.	2.3	31
174	An electrochemical in situ study of freezing and thawing of ionic liquids in carbon nanopores. Physical Chemistry Chemical Physics, 2014, 16, 21219-21224.	1.3	30
175	One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chemical Communications, 2014, 50, 7420-7423.	2.2	614
176	Extraction of Energy from Small Thermal Differences near Room Temperature Using Capacitive Membrane Technology. Environmental Science and Technology Letters, 2014, 1, 356-360.	3.9	29
177	Ring Current Effects: Factors Affecting the NMR Chemical Shift of Molecules Adsorbed on Porous Carbons. Journal of Physical Chemistry C, 2014, 118, 7508-7514.	1.5	110
178	Supercapacitors: Carbons and Electrolytes for Advanced Supercapacitors (Adv. Mater. 14/2014). Advanced Materials, 2014, 26, 2283-2283.	11.1	81
179	Effects of synthesis parameters on carbon nanotubes manufactured by template-based chemical vapor deposition. Carbon, 2014, 80, 28-39.	5.4	36
180	Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation. Journal of Materials Chemistry A, 2014, 2, 9313.	5.2	233

#	Article	IF	CITATIONS
181	Polyvinylpyrrolidone as binder for castable supercapacitor electrodes with high electrochemical performance in organic electrolytes. Journal of Power Sources, 2014, 266, 374-383.	4.0	102
182	Structure and Electrochemical Performance of Carbideâ€Derived Carbon Nanopowders. Advanced Functional Materials, 2013, 23, 1081-1089.	7.8	165
183	Collective Phase Transition Dynamics in Microarray Composite Li _{<i>x</i>} FePO ₄ Electrodes Tracked by in Situ Electrochemical Quartz Crystal Admittance. Journal of Physical Chemistry C, 2013, 117, 15505-15514.	1.5	35
184	Pseudocapacitance and performance stability of quinone-coated carbon onions. Nano Energy, 2013, 2, 702-712.	8.2	135
185	Molecular Insights into Carbon Supercapacitors Based on Room-Temperature Ionic Liquids. Journal of Physical Chemistry Letters, 2013, 4, 3367-3376.	2.1	125
186	Comment on "Carbon nanotube/graphene composite for enhanced capacitive deionization performance―by Y. Wimalasiri and L. Zou. Carbon, 2013, 63, 574-575.	5.4	10
187	Anisometric charge dependent swelling of porous carbon in an ionic liquid. Electrochemistry Communications, 2013, 34, 196-199.	2.3	59
188	Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy and Environmental Science, 2013, 6, 3700.	15.6	461
189	Double-layer Capacitors with a Higher Energy Density. ATZelektronik Worldwide, 2013, 8, 4-7.	0.1	0
190	In Situ Tracking of Ion Insertion in Iron Phosphate Olivine Electrodes via Electrochemical Quartz Crystal Admittance. Journal of Physical Chemistry C, 2013, 117, 1247-1256.	1.5	37
191	In situ tracking of the nanoscale expansion of porous carbon electrodes. Energy and Environmental Science, 2013, 6, 225-231.	15.6	60
192	Development of a Green Supercapacitor Composed Entirely of Environmentally Friendly Materials. ChemSusChem, 2013, 6, 2269-2280.	3.6	155
193	Investigation of carbon materials for use as a flowable electrode in electrochemical flow capacitors. Electrochimica Acta, 2013, 98, 123-130.	2.6	121
194	Nuclear magnetic resonance study of ion adsorption on microporous carbide-derived carbon. Physical Chemistry Chemical Physics, 2013, 15, 7722.	1.3	77
195	Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 2013, 58, 1388-1442.	16.0	1,648
196	Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature. Journal of Physical Chemistry C, 2013, 117, 9178-9186.	1.5	69
197	Adsorption of proteins in channels of carbon nanotubes: Effect of surface chemistry. Materials Express, 2013, 3, 1-10.	0.2	18
198	Direct Observation of Pseudocapacitor Electrode Behavior During Electrochemical Biasing using in-situ Liquid Stage Electron Microscopy. Microscopy and Microanalysis, 2013, 19, 412-413.	0.2	0

#	Article	IF	CITATIONS
199	Cytokine Removal: Hierarchical Porous Carbideâ€Derived Carbons for the Removal of Cytokines from Blood Plasma (Adv. Healthcare Mater. 6/2012). Advanced Healthcare Materials, 2012, 1, 682-682.	3.9	3
200	Understanding controls on interfacial wetting at epitaxial graphene: Experiment and theory. Physical Review B, 2012, 85, .	1.1	95
201	In Situ Electrochemical Dilatometry of Onion-Like Carbon and Carbon Black. Journal of the Electrochemical Society, 2012, 159, A1897-A1903.	1.3	56
202	Nanoscale Perturbations of Room Temperature Ionic Liquid Structure at Charged and Uncharged Interfaces. ACS Nano, 2012, 6, 9818-9827.	7.3	151
203	Comment on "Synthesis, characterization and growth mechanism of flower-like vanadium carbide hierarchical nanocrystals― CrystEngComm, 2012, 14, 4525.	1.3	1
204	Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy and Environmental Science, 2012, 5, 6474.	15.6	431
205	Hierarchical Porous Carbideâ€Derived Carbons for the Removal of Cytokines from Blood Plasma. Advanced Healthcare Materials, 2012, 1, 796-800.	3.9	33
206	Two-Dimensional Transition Metal Carbides. ACS Nano, 2012, 6, 1322-1331.	7.3	3,453
207	Polymer Single Crystal-Decorated Superhydrophobic Buckypaper with Controlled Wetting and Conductivity. ACS Nano, 2012, 6, 1204-1213.	7.3	48
208	Firstâ€order Raman scattering of the MAX phases Ta ₄ AlC ₃ , Nb ₄ AlC ₃ , Ti ₄ AlN ₃ , and Ta ₂ AlC. Journal of Raman Spectroscopy, 2012, 43, 954-958.	1.2	36
209	The Electrochemical Flow Capacitor: A New Concept for Rapid Energy Storage and Recovery. Advanced Energy Materials, 2012, 2, 895-902.	10.2	214
210	Electrochemical Flow Cells: The Electrochemical Flow Capacitor: A New Concept for Rapid Energy Storage and Recovery (Adv. Energy Mater. 7/2012). Advanced Energy Materials, 2012, 2, 911-911.	10.2	4
211	Carbideâ€Derived Carbon Monoliths with Hierarchical Pore Architectures. Angewandte Chemie - International Edition, 2012, 51, 7577-7580.	7.2	131
212	Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. Carbon, 2012, 50, 3298-3309.	5.4	218
213	Ordered mesoporous carbide-derived carbons prepared by soft templating. Carbon, 2012, 50, 3987-3994.	5.4	46
214	MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 2012, 16, 61-64.	2.3	1,252
215	High power supercapacitor electrodes based on flexible TiC-CDC nano-felts. Journal of Power Sources, 2012, 201, 368-375.	4.0	93
216	Small-angle neutron scattering characterization of the structure of nanoporous carbons for energy-related applications. Microporous and Mesoporous Materials, 2012, 149, 46-54.	2.2	37

#	Article	IF	CITATIONS
217	Firsta Corder Raman scattering of the MAX phases: T(sub>2AlN, Ti ₂ AlC, (Ti _{0.5} AlC,sub>0.5N _{0.5} AlC, V ₂ AlC, (Ti _{0.5} V _{0.5}) ₂ AlC, V ₂ AlC, Ti ₃ AlC ₂ , and Ti ₃ CeC ₂ . Journal of Raman Spectroscopy,	1.2	159
218	Synthesis of a new nanocrystalline titanium aluminum fluoride phase by reaction of Ti2AlC with hydrofluoric acid. RSC Advances, 2011, 1, 1493.	1.7	49
219	Carbon coated textiles for flexible energy storage. Energy and Environmental Science, 2011, 4, 5060.	15.6	486
220	Capacitive Energy Storage from â^'50 to 100 °C Using an Ionic Liquid Electrolyte. Journal of Physical Chemistry Letters, 2011, 2, 2396-2401.	2.1	361
221	Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy and Environmental Science, 2011, 4, 3059.	15.6	558
222	Ultrasmall Gold Nanoparticles with the Size Controlled by the Pores of Carbide-Derived Carbon. Materials Express, 2011, 1, 259-266.	0.2	5
223	Hydrothermal Oxidation Behavior of Bulk Titanium Aluminum Carbide. Journal of the American Ceramic Society, 2011, 94, 3460-3466.	1.9	16
224	On the Topotactic Transformation of <scp><scp>Ti₂AlC</scp></scp> into a <scp><scp>Ti–C–O–F</scp></scp> Cubic Phase by Heating in Molten Lithium Fluoride in Air. Journal of the American Ceramic Society, 2011, 94, 4556-4561.	1.9	91
225	On the response of titanium sulfocarbide to stress studied by in situ neutron diffraction and the elastoplastic self-consistent approach. Scripta Materialia, 2011, 65, 573-576.	2.6	8
226	In situ monitoring and depth-resolved characterization of wet wear of silicon carbide. Wear, 2011, 271, 2665-2672.	1.5	16
227	In situ electrochemical dilatometry of carbide-derived carbons. Electrochemistry Communications, 2011, 13, 1221-1224.	2.3	76
228	1Â+Â1Â=Â3: Coupling μ-XRD2 and DTA New insights in temperature-dependent phase transitions. Journal of Thermal Analysis and Calorimetry, 2011, 103, 917-923.	2.0	9
229	Enhanced hydrogen and methane gas storage of silicon oxycarbide derived carbon. Microporous and Mesoporous Materials, 2011, 144, 105-112.	2.2	94
230	Lessons from Nature for the Construction of Ceramic Cellular Materials for Superior Energy Absorption. Advanced Engineering Materials, 2011, 13, 1042-1049.	1.6	13
231	Carbideâ€Đerived Carbons – From Porous Networks to Nanotubes and Graphene. Advanced Functional Materials, 2011, 21, 810-833.	7.8	585
232	"Brickâ€andâ€Mortar―Selfâ€Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites. Advanced Functional Materials, 2011, 21, 2208-2215.	7.8	98
233	Twoâ€Dimensional Nanocrystals Produced by Exfoliation of Ti ₃ AlC ₂ . Advanced Materials, 2011, 23, 4248-4253.	11.1	7,931
234	Flexible Nanoâ€felts of Carbideâ€Derived Carbon with Ultraâ€high Power Handling Capability. Advanced Energy Materials, 2011, 1, 423-430.	10.2	172

#	Article	IF	CITATIONS
235	STORAGE MATERIALS: Flexible Nano-felts of Carbide-Derived Carbon with Ultra-high Power Handling Capability (Adv. Energy Mater. 3/2011). Advanced Energy Materials, 2011, 1, 422-422.	10.2	2
236	Fabrics Capable of Capacitive Energy Storage. , 2011, , .		0
237	Nanocrystalline Mg-Matrix Composites with Ultrahigh Damping Properties. , 2011, , 463-468.		3
238	A Novel Approach for Oxide Scale Growth Characterization: Combining Etching with Atomic Force Microscopy. Nanoscience and Technology, 2011, , 355-383.	1.5	0
239	Determination of the elastic modulus of highly porous samples by nanoindentation: a case study on sea urchin spines. Journal of Materials Science, 2010, 45, 2408-2418.	1.7	44
240	Reduced thermal conductivity during wear keeps surfaces hot. Scripta Materialia, 2010, 62, 219-222.	2.6	4
241	Raman spectroscopy for the investigation of indentation-induced domain texturing in lead zirconate titanate piezoceramics. Scripta Materialia, 2010, 63, 343-346.	2.6	16
242	Mechanisms and Kinetics of the Hydrothermal Oxidation of Bulk Titanium Silicon Carbide. Journal of the American Ceramic Society, 2010, 93, 1148-1155.	1.9	24
243	Characterization of Wear Mechanisms of Silicon Carbide Materials. Advances in Science and Technology, 2010, 64, 49-58.	0.2	0
244	Sliding Wear of Silicon Carbide: Measurement of the Thermal Conductivity via Raman Spectroscopy. , 2010, , .		0
245	High-pressure powder x-ray diffraction experiments and <i>ab initio</i> calculation of Ti3AlC2. Journal of Applied Physics, 2009, 106, .	1.1	15
246	Metamictization in zircon: Raman investigation following a Rietveld approach. Part II: Sampling depth implication and experimental data. Journal of Raman Spectroscopy, 2009, 40, 499-508.	1.2	15
247	Metamictization in zircon. Part I: Raman investigation following a Rietveld approach: Profile line deconvolution technique Journal of Raman Spectroscopy, 2009, 40, 491-498.	1.2	9
248	Raman polarization studies of highly oriented organic thin films. Journal of Raman Spectroscopy, 2009, 40, 2015-2022.	1.2	19
249	Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part I. Mechanical behavior of sea urchin spines under compression. Journal of Bionic Engineering, 2009, 6, 203-213.	2.7	43
250	Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part II. Mechanical Behavior of Sea Urchin Spine Inspired Porous Aluminum Oxide Ceramics under Compression. Journal of Bionic Engineering, 2009, 6, 357-364.	2.7	17
251	Microstructural Evolution of Silica on Single rystal Silicon Carbide. Part I: Devitrification and Oxidation Rates. Journal of the American Ceramic Society, 2009, 92, 724-731.	1.9	36
252	Microstructural Evolution of Silica on Single Crystal Silicon Carbide. Part II: Influence of Impurities and Defects. Journal of the American Ceramic Society, 2009, 92, 1796-1805.	1.9	15

#	Article	IF	CITATIONS
253	Tribological and hydrothermal behaviour of silicon carbide under water lubrication. Wear, 2009, 266, 771-781.	1.5	22
254	A model for wet silicon carbide tribo-corrosion. Wear, 2009, 267, 168-176.	1.5	26
255	Thermal annealing of SiC thin films with varying stoichiometry. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 159-160, 355-360.	1.7	32
256	Experimental Determination of the Raman Sampling Depth in Zirconia Ceramics. Applied Spectroscopy, 2009, 63, 1288-1292.	1.2	30
257	Microâ€Raman spectroscopy on analcime and pollucite in comparison to Xâ€ray diffraction. Journal of Raman Spectroscopy, 2008, 39, 587-592.	1.2	19
258	Silica on Silicon Carbide. Critical Reviews in Solid State and Materials Sciences, 2008, 33, 1-99.	6.8	176
259	Structural characterisation of tribologically influenced silicon carbide ceramic surfaces. Current Opinion in Solid State and Materials Science, 2008, 12, 73-80.	5.6	7
260	Scanning electron and polarization microscopy study of the variability and character of hollow macro-defects in silicon carbide wafers. Philosophical Magazine, 2008, 88, 1639-1657.	0.7	12
261	EOS calculations for hydrothermal diamond anvil cell operation. Review of Scientific Instruments, 2008, 79, 085104.	0.6	9
262	Hydrothermal Oxidation of Silicon Carbide and Its Bearing on Wet Wear Mechanisms. Ceramic Engineering and Science Proceedings, 0, , 143-154.	0.1	0
263	Corrosion Behavior of Silicon Carbide in Aqueous Media Lubricated Sliding Applications. , 0, , 191-197.		0