## Assaf Distelfeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579718/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361, .                                                                                                                   | 6.0  | 2,424     |
| 2  | A NAC Gene Regulating Senescence Improves Grain Protein, Zinc, and Iron Content in Wheat. Science, 2006, 314, 1298-1301.                                                                                                             | 6.0  | 1,408     |
| 3  | Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 2017, 357, 93-97.                                                                                                                 | 6.0  | 781       |
| 4  | The transcriptional landscape of polyploid wheat. Science, 2018, 361, .                                                                                                                                                              | 6.0  | 768       |
| 5  | A Kinase-START Gene Confers Temperature-Dependent Resistance to Wheat Stripe Rust. Science, 2009, 323, 1357-1360.                                                                                                                    | 6.0  | 625       |
| 6  | Durum wheat genome highlights past domestication signatures and future improvement targets.<br>Nature Genetics, 2019, 51, 885-895.                                                                                                   | 9.4  | 576       |
| 7  | Multiple wheat genomes reveal global variation in modern breeding. Nature, 2020, 588, 277-283.                                                                                                                                       | 13.7 | 513       |
| 8  | Regulation of flowering in temperate cereals. Current Opinion in Plant Biology, 2009, 12, 178-184.                                                                                                                                   | 3.5  | 423       |
| 9  | A highâ€density, <scp>SNP</scp> â€based consensus map of tetraploid wheat as a bridge to integrate durum<br>and bread wheat genomics and breeding. Plant Biotechnology Journal, 2015, 13, 648-663.                                   | 4.1  | 386       |
| 10 | Senescence, nutrient remobilization, and yield in wheat and barley. Journal of Experimental Botany, 2014, 65, 3783-3798.                                                                                                             | 2.4  | 259       |
| 11 | Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations.<br>Physiologia Plantarum, 2007, 129, 635-643.                                                                                          | 2.6  | 244       |
| 12 | High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp.<br>dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theoretical and Applied<br>Genetics, 2005, 112, 97-105. | 1.8  | 208       |
| 13 | Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family.<br>Nature Communications, 2018, 9, 3735.                                                                                       | 5.8  | 204       |
| 14 | Precise mapping of a locus affecting grain protein content in durum wheat. Theoretical and Applied Genetics, 2003, 107, 1243-1251.                                                                                                   | 1.8  | 170       |
| 15 | Regulation of Freezing Tolerance and Flowering in Temperate Cereals: The <i>VRN-1</i> Connection  Â.<br>Plant Physiology, 2010, 153, 1846-1858.                                                                                      | 2.3  | 162       |
| 16 | Physical map of the wheat highâ€grain protein content gene Gpcâ€B1 and development of a<br>highâ€ŧhroughput molecular marker. New Phytologist, 2006, 169, 753-763.                                                                   | 3.5  | 150       |
| 17 | Genetic and Molecular Characterization of the <i>VRN2</i> Loci in Tetraploid Wheat  Â. Plant<br>Physiology, 2009, 149, 245-257.                                                                                                      | 2.3  | 129       |
|    |                                                                                                                                                                                                                                      |      |           |

Construction and characterization of a half million clone BAC library of durum wheat (Triticum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62

ASSAF DISTELFELD

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Metabolic Gene Cluster in the Wheat <i>W1</i> and the Barley <i>Cer-cqu</i> Loci Determines<br>β-Diketone Biosynthesis and Glaucousness. Plant Cell, 2016, 28, 1440-1460.                                       | 3.1 | 123       |
| 20 | Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR‥ complexes. Plant Journal, 2011, 67, 763-773.                                                                        | 2.8 | 115       |
| 21 | Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Functional and Integrative Genomics, 2004, 4, 59-66. | 1.4 | 109       |
| 22 | Regulation of Zn and Fe transporters by the GPC1gene during early wheat monocarpic senescence.<br>BMC Plant Biology, 2014, 14, 368.                                                                               | 1.6 | 107       |
| 23 | Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theoretical and Applied Genetics, 2010, 120, 543-552.                                                       | 1.8 | 98        |
| 24 | Ultra-dense genetic map of durum wheatÂ×Âwild emmer wheat developed using the 90K iSelect SNP<br>genotyping assay. Molecular Breeding, 2014, 34, 1549-1562.                                                       | 1.0 | 86        |
| 25 | Functional characterization of GPC-1 genes in hexaploid wheat. Planta, 2014, 239, 313-324.                                                                                                                        | 1.6 | 85        |
| 26 | Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley.<br>Molecular Genetics and Genomics, 2013, 288, 261-275.                                                         | 1.0 | 83        |
| 27 | Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics, 2010, 11, 408.                                                                                                                      | 1.2 | 82        |
| 28 | ldentification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant<br>Molecular Biology, 2007, 64, 17-34.                                                                            | 2.0 | 80        |
| 29 | Effect of the down-regulation of the high Grain Protein Content (GPC) genes on the wheat transcriptome during monocarpic senescence. BMC Genomics, 2011, 12, 492.                                                 | 1.2 | 75        |
| 30 | Colinearity between the barley grain protein content (GPC) QTL on chromosome arm 6HS and the wheat Gpc-B1 region. Molecular Breeding, 2008, 22, 25-38.                                                            | 1.0 | 70        |
| 31 | Divergent functions of orthologous NAC transcription factors in wheat and rice. Plant Molecular<br>Biology, 2012, 78, 515-524.                                                                                    | 2.0 | 70        |
| 32 | Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B. Theoretical and Applied Genetics, 2018, 131, 2451-2462.                                                                                        | 1.8 | 66        |
| 33 | Improved Genome Sequence of Wild Emmer Wheat Zavitan with the Aid of Optical Maps. G3: Genes,<br>Genomes, Genetics, 2019, 9, 619-624.                                                                             | 0.8 | 64        |
| 34 | SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26. Theoretical and Applied Genetics, 2018, 131, 1481-1496.         | 1.8 | 61        |
| 35 | On the Origin of the Non-brittle Rachis Trait of Domesticated Einkorn Wheat. Frontiers in Plant<br>Science, 2017, 8, 2031.                                                                                        | 1.7 | 58        |
| 36 | Characterization of the maintained vegetative phase deletions from diploid wheat and their effect on VRN2 and FT transcript levels. Molecular Genetics and Genomics, 2010, 283, 223-232.                          | 1.0 | 54        |

ASSAF DISTELFELD

| #  | Article                                                                                                                                                                                             | lF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Haplotype Analysis of the Pre-harvest Sprouting Resistance Locus Phs-A1 Reveals a Causal Role of<br>TaMKK3-A in Global Germplasm. Frontiers in Plant Science, 2017, 8, 1555.                        | 1.7 | 50        |
| 38 | Genome sequences of three <i>Aegilops</i> species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. Plant Journal, 2022, 110, 179-192.         | 2.8 | 46        |
| 39 | Introgression of the Aegilops speltoides Su1-Ph1 Suppressor into Wheat. Frontiers in Plant Science, 2017, 8, 2163.                                                                                  | 1.7 | 45        |
| 40 | Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides. Theoretical and Applied Genetics, 2012, 124, 911-922.      | 1.8 | 44        |
| 41 | GNI-A1 mediates trade-off between grain number and grain weight in tetraploid wheat. Theoretical and Applied Genetics, 2019, 132, 2353-2365.                                                        | 1.8 | 43        |
| 42 | QTLs for uniform grain dimensions and germination selected during wheat domestication are co-located on chromosome 4B. Theoretical and Applied Genetics, 2016, 129, 1303-1315.                      | 1.8 | 37        |
| 43 | Genome Based Meta-QTL Analysis of Grain Weight in Tetraploid Wheat Identifies Rare Alleles of GRF4<br>Associated with Larger Grains. Genes, 2018, 9, 636.                                           | 1.0 | 37        |
| 44 | A High-Density Genetic Map of Wild Emmer Wheat from the Karaca DaÄŸ Region Provides New Evidence on<br>the Structure and Evolution of Wheat Chromosomes. Frontiers in Plant Science, 2017, 8, 1798. | 1.7 | 33        |
| 45 | Structural variation and rates of genome evolution in the grass family seen through comparison of sequences of genomes greatly differing in size. Plant Journal, 2018, 95, 487-503.                 | 2.8 | 31        |
| 46 | Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1. Journal of Experimental Botany, 2017, 68, 983-996.                     | 2.4 | 30        |
| 47 | The Solanum tuberosum KST1 partial promoter as a tool for guard cell expression in multiple plant species. Journal of Experimental Botany, 2017, 68, 2885-2897.                                     | 2.4 | 29        |
| 48 | Unlocking the Genetic Diversity within A Middle-East Panel of Durum Wheat Landraces for Adaptation to Semi-arid Climate. Agronomy, 2018, 8, 233.                                                    | 1.3 | 28        |
| 49 | Chromosomeâ€based survey sequencing reveals the genome organization of wild wheat progenitor<br><i>Triticum dicoccoides</i> . Plant Biotechnology Journal, 2018, 16, 2077-2087.                     | 4.1 | 28        |
| 50 | Rapid evolution of α-gliadin gene family revealed by analyzing Gli-2 locus regions of wild emmer wheat.<br>Functional and Integrative Genomics, 2019, 19, 993-1005.                                 | 1.4 | 28        |
| 51 | High density mapping and haplotype analysis of the major stem-solidness locus SSt1 in durum and common wheat. PLoS ONE, 2017, 12, e0175285.                                                         | 1.1 | 23        |
| 52 | Wheat domestication in light of haplotype analyses of the Brittle rachis 1 genes (BTR1-A and BTR1-B).<br>Plant Science, 2019, 285, 193-199.                                                         | 1.7 | 23        |
| 53 | A glycosyl transferase family 43 protein involved in xylan biosynthesis is associated with straw digestibility in <i>Brachypodium distachyon</i> . New Phytologist, 2018, 218, 974-985.             | 3.5 | 21        |
| 54 | Wild emmer introgression alters root-to-shoot growth dynamics in durum wheat in response to water stress. Plant Physiology, 2021, 187, 1149-1162.                                                   | 2.3 | 21        |

| #  | Article                                                                                                                                                                                                              | IF        | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 55 | Introgression of leaf rust and stripe rust resistance from Sharon goatgrass ( <i>Aegilops) Tj ETQq1 1 0.784314 r</i>                                                                                                 | gBT/Qverl | ock 10 Tf 50 |
| 56 | Exploring the metabolic variation between domesticated and wild tetraploid wheat genotypes in response to corn leaf aphid infestation. Plant Signaling and Behavior, 2018, 13, e1486148.                             | 1.2       | 13           |
| 57 | Wild emmer wheat as a source for high-grain-protein genes: Map-based cloning of<br><i>Cpc-B1</i> . Israel Journal of Plant Sciences, 2007, 55, 297-306.                                                              | 0.3       | 12           |
| 58 | The Brittle Rachis Trait in Species Belonging to the Triticeae and Its Controlling Genes Btr1 and Btr2.<br>Frontiers in Plant Science, 2020, 11, 1000.                                                               | 1.7       | 12           |
| 59 | The Independent Domestication of Timopheev's Wheat: Insights from Haplotype Analysis of the Brittle<br>rachis 1 (BTR1-A) Gene. Genes, 2021, 12, 338.                                                                 | 1.0       | 11           |
| 60 | Recombination between homoeologous chromosomes induced in durum wheat by the Aegilops speltoides Su1-Ph1 suppressor. Theoretical and Applied Genetics, 2019, 132, 3265-3276.                                         | 1.8       | 8            |
| 61 | Genome-Wide Mapping of Loci for Adult-Plant Resistance to Stripe Rust in Durum Wheat Svevo Using the 90K SNP Array. Plant Disease, 2021, 105, 879-888.                                                               | 0.7       | 4            |
| 62 | Barley molybdenum cofactor sulfurase (MCSU): sequencing, modeling, and its comparison to other<br>higher plants. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2015, 39,<br>786-796. | 0.8       | 3            |
| 63 | New insights into the dispersion history and adaptive evolution of taxon Aegilops tauschii in China.<br>Journal of Genetics and Genomics, 2021, , .                                                                  | 1.7       | 3            |
| 64 | A Time to Sow, a Time to Reap: Modifications to Biological and Economic Rhythms in Southwest Asian<br>Plant and Animal Domestication. Agronomy, 2022, 12, 1368.                                                      | 1.3       | 3            |
| 65 | Functional leaf anatomy of the invasive weed <i>Solanum rostratum</i> Dunal. Weed Research, 2022, 62, 172-180.                                                                                                       | 0.8       | Ο            |