Colin C Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579700/publications.pdf

Version: 2024-02-01

80 papers

1,941 citations

236833 25 h-index 42 g-index

82 all docs 82 docs citations

82 times ranked 2482 citing authors

#	Article	IF	CITATIONS
1	Tackling cancer cell dormancy: Insights from immune models, and transplantation. Seminars in Cancer Biology, 2022, 78, 5-16.	4.3	9
2	Loss of thymic function promotes EAE relapse in anti-CD52-treated mice. Current Research in Immunology, 2022, 3, 37-41.	1.2	0
3	CD5 levels reveal distinct basal Tâ€cell receptor signals in T cells from nonâ€obese diabetic mice. Immunology and Cell Biology, 2021, 99, 656-667.	1.0	6
4	Antiâ€CD52 blocks EAE independent of PDâ€1 signals and promotes repopulation dominated by doubleâ€negative T cells and newly generated T and B cells. European Journal of Immunology, 2020, 50, 1362-1373.	1.6	2
5	Significant association between tumor mutational burden and immune-related adverse events during immune checkpoint inhibition therapies. Cancer Immunology, Immunotherapy, 2020, 69, 683-687.	2.0	16
6	Desensitization using imlifidase and EndoS enables chimerism induction in allosensitized recipient mice. American Journal of Transplantation, 2020, 20, 2356-2365.	2.6	10
7	On T cell development, T cell signals, T cell specificity and sensitivity, and the autoimmunity facilitated by lymphopenia. Scandinavian Journal of Immunology, 2020, 91, e12888.	1.3	4
8	Exploiting autoimmunity unleashed by lowâ€dose immune checkpoint blockade to treat advanced cancer. Scandinavian Journal of Immunology, 2019, 90, e12821.	1.3	20
9	The case for alleleâ€specific recognition by the TCR. Scandinavian Journal of Immunology, 2019, 90, e12790.	1.3	3
10	Best practices for enhancing surgical research: a perspective from the Canadian Association of Chairs of Surgical Research. Canadian Journal of Surgery, 2019, 62, 488-498.	0.5	5
11	Apelin directs endothelial cell differentiation and vascular repair following immune-mediated injury. Journal of Clinical Investigation, 2019, 130, 94-107.	3.9	43
12	Prior to Peripheral Tolerance, Newly Generated CD4 T Cells Maintain Dangerous Autoimmune Potential: Fas- and Perforin-Independent Autoimmunity Controlled by Programmed Death-1. Frontiers in Immunology, 2018, 9, 12.	2.2	17
13	Stability of Chimerism in Non-Obese Diabetic Mice Achieved By Rapid T Cell Depletion Is Associated With High Levels of Donor Cells Very Early After Transplant. Frontiers in Immunology, 2018, 9, 837.	2.2	0
14	Immune Class Regulation and Its Medical Significance Part II of a Report of a Workshop on Foundational Concepts of Immune Regulation. Scandinavian Journal of Immunology, 2017, 85, 242-250.	1.3	4
15	Immunological Tolerance. Part I of a Report of a Workshop on Foundational Concepts of Immune Regulation. Scandinavian Journal of Immunology, 2017, 85, 84-94.	1.3	11
16	Two Strikes and You're Out? The Pathogenic Interplay of Coinhibitor Deficiency and Lymphopenia-Induced Proliferation. Journal of Immunology, 2017, 198, 2534-2541.	0.4	22
17	PD-1 Controls Tonic Signaling and Lymphopenia-Induced Proliferation of T Lymphocytes. Frontiers in Immunology, 2017, 8, 1289.	2.2	20
18	Protocol-In vitro T Cell Proliferation and Treg Suppression Assay with Celltrace Violet. Bio-protocol, 2016, 6, .	0.2	2

#	Article	IF	Citations
19	Morphologic and Histologic Comparison of Hypertrophic Scar in Nude Mice, T-Cell Receptor, and Recombination Activating Gene Knockout Mice. Plastic and Reconstructive Surgery, 2015, 136, 1192-1204.	0.7	9
20	PDâ€1 is not required for natural or peripherally induced regulatory T cells: Severe autoimmunity despite normal production of regulatory T cells. European Journal of Immunology, 2014, 44, 3560-3572.	1.6	38
21	Application of central immunologic concepts to cancer: Helping TÂcells and B cells become intolerant of tumors. European Journal of Immunology, 2014, 44, 1921-1924.	1.6	6
22	TÂcells generated in the absence of a thoracic thymus fail to establish homeostasis. European Journal of Immunology, 2014, 44, 2263-2273.	1.6	3
23	A nude mouse model of hypertrophic scar shows morphologic and histologic characteristics of human hypertrophic scar. Wound Repair and Regeneration, 2013, 21, 77-87.	1.5	46
24	Control of In Vivo Collateral Damage Generated by T Cell Immunity. Journal of Immunology, 2013, 191, 1686-1691.	0.4	14
25	A discussion of immune tolerance and the layered immune system hypothesis. Chimerism, 2013, 4, 62-70.	0.7	5
26	Toward minimal conditioning protocols for allogeneic chimerism in tolerance resistant recipients. Chimerism, 2013, 4, 23-25.	0.7	6
27	Targeting Cells Causing Split Tolerance Allows Fully Allogeneic Islet Survival With Minimal Conditioning in NOD Mixed Chimeras. American Journal of Transplantation, 2012, 12, 3235-3245.	2.6	7
28	Comment on: Ten experiments that would make a difference in understanding immune mechanisms. Cellular and Molecular Life Sciences, 2012, 69, 413-416.	2.4	1
29	Programmed death-1 is required for systemic self-tolerance in newly generated T cells during the establishment of immune homeostasis. Journal of Autoimmunity, 2011, 36, 301-312.	3.0	54
30	The role of co-inhibitory signals in spontaneous tolerance of weakly mismatched transplants. Immunobiology, 2011, 216, 918-924.	0.8	15
31	Soluble Donor DNA and Islet Injury After Transplantation. Transplantation, 2011, 92, 607-611.	O . 5	7
32	100: INVESTIGATION OF AN ATHYMIC MOUSE MODEL OF HUMAN HYPERTROPHIC SCAR FORMATION. Plastic and Reconstructive Surgery, 2011, 127, 58.	0.7	1
33	An essential role for programmed death-1 in the control of autoimmunity: implications for the future of hematopoietic stem cell transplantation. Future Oncology, 2011, 7, 929-932.	1.1	2
34	Mixed chimerism and split tolerance: Mechanisms and clinical correlations. Chimerism, 2011, 2, 89-101.	0.7	27
35	Divide and conquer. Chimerism, 2011, 2, 29-32.	0.7	1
36	Nonobese Diabetic Natural Killer Cells: A Barrier to Allogeneic Chimerism That Can be Reduced by Rapamycin. Transplantation, 2011, 92, 977-984.	0.5	8

#	Article	IF	CITATIONS
37	Divide and conquer: Blocking graft versus host but not graft versus leukemia T cells with agonist BTLA co-inhibitory signals. Chimerism, 2011, 2, 29-32.	0.7	1
38	Co-inhibitory molecules: Controlling the effectors or controlling the controllers?. Self/nonself, 2010, 1, 77-88.	2.0	20
39	BTLA targeting modulates lymphocyte phenotype, function, and numbers and attenuates disease in nonobese diabetic mice. Journal of Leukocyte Biology, 2009, 86, 41-51.	1.5	28
40	Comment on â€~Tolerance Versus Immunosuppression: A Perspective'. American Journal of Transplantation, 2009, 9, 435-436.	2.6	0
41	Placing Regulatory T cells into Global Theories of Immunity: an Analysis of Cohn's Challenge to Integrity (Dembic). Scandinavian Journal of Immunology, 2009, 69, 306-309.	1.3	2
42	On the Sorting of the Repertoire: An analysis of Cohn's challenge to Integrity (Dembic), Round 2. Scandinavian Journal of Immunology, 2009, 70, 321-325.	1.3	6
43	Effect of different induction strategies on effector, regulatory and memory lymphocyte sub-populations in clinical islet transplantation. Transplant International, 2009, 22, 182-191.	0.8	48
44	Protein Kinase C Inhibitor, AEB-071, Acts Complementarily With Cyclosporine to Prevent Islet Rejection in Rats. Transplantation, 2009, 87, 59-65.	0.5	12
45	Blockade of immunoregulatory Fc-signalling by HIV peptides: oligopeptides from HIV gpl20 and gp41 bind the Fc portion of IgG and increase the in vitro anti-ssDNA response. Clinical and Experimental Immunology, 2008, 94, 26-31.	1.1	3
46	Differential Susceptibility of Allogeneic Targets to Indirect CD4 Immunity Generates Split Tolerance. Journal of Immunology, 2008, 181, 4603-4612.	0.4	20
47	Development of Either Split Tolerance or Robust Tolerance along with Humoral Tolerance to Donor and Third-Party Alloantigens in Nonmyeloablative Mixed Chimeras. Journal of Immunology, 2008, 180, 5177-5186.	0.4	29
48	CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood, 2007, 109, 5346-5354.	0.6	373
49	Negative and Positive Co-Signaling With Anti-BTLA (PJ196) and CTLA4Ig Prolongs Islet Allograft Survival. Transplantation, 2007, 84, 1368-1372.	0.5	26
50	The ability of natural tolerance to be applied to allogeneic tissue: determinants and limits. Biology Direct, 2007, 2, 10.	1.9	34
51	Non-myeloablative mixed chimerism approaches and tolerance, a split decision. European Journal of Immunology, 2007, 37, 1233-1242.	1.6	24
52	Diabetes Induces Rapid Suppression of Adaptive Immunity Followed by Homeostatic T-cell Proliferation. Scandinavian Journal of Immunology, 2007, 65, 22-31.	1.3	28
53	Human Islet Function Is Not Impaired by the Sphingosineâ€1â€Phosphate Receptor Modulator FTY720. American Journal of Transplantation, 2007, 7, 2031-2038.	2.6	27
54	Combined Coinhibitory and Costimulatory Modulation with Anti-BTLA and CTLA4lg Facilitates Tolerance in Murine Islet Allografts. American Journal of Transplantation, 2007, 7, 2663-2674.	2.6	48

#	Article	IF	CITATIONS
55	Compaction of Islets Is Detrimental to Transplant Outcome in Mice. Transplantation, 2006, 82, 1472-1476.	0.5	13
56	Coinhibitory T-Cell Signaling in Islet Allograft Rejection and Tolerance. Cell Transplantation, 2006, 15, 105-119.	1.2	65
57	Chemokines and Their Receptors in Islet Allograft Rejection and as Targets for Tolerance Induction. Cell Transplantation, 2006, 15, 295-309.	1.2	30
58	Time, Space and Contextual Models of the Immunity Tolerance Decision: Bridging the Geographical Divide of Zinkernagel and Hengartner's 'Credo 2004'. Scandinavian Journal of Immunology, 2006, 63, 249-256.	1.3	15
59	Costimulation blockade of both inducible costimulator and CD40 ligand induces dominant tolerance to islet allografts and prevents spontaneous autoimmune diabetes in the NOD mouse. Diabetes, 2006, 55, 27-33.	0.3	42
60	Robust Tolerance to Fully Allogeneic Islet Transplants Achieved by Chimerism with Minimal Conditioning. Transplantation, 2005, 80, 370-377.	0.5	25
61	Decellularization reduces the immune response to aortic valve allografts in the rat. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 469-476.	0.4	93
62	Thymic cortical epithelium induces self tolerance. European Journal of Immunology, 2005, 35, 709-717.	1.6	26
63	Mechanisms and models of peripheral CD4 T cell self-tolerance. Frontiers in Bioscience - Landmark, 2004, 9, 2947.	3.0	11
64	Conceptual Models in Immunity/Tolerance: Application to Transplantation. , 2004, , 171-190.		6
65	Multiple Combination Therapies Involving Blockade of ICOS/B7RP-1 Costimulation Facilitate Long-Term Islet Allograft Survival. American Journal of Transplantation, 2004, 4, 526-536.	2.6	68
66	Combination therapy with anti-ICOS and cyclosporine enhances cardiac but not islet allograft survival. Transplantation Proceedings, 2003, 35, 2477-2478.	0.3	11
67	Targeting the ICOS-B7h Costimulatory Pathway Synergizes with Rapamycin to Regulate Alloresponses in Islet Transplantation. Transplantation, 2003, 76, S51.	0.5	0
68	Immunity or tolerance: Opposite outcomes of microchimerism from skin grafts. Nature Medicine, 2001, 7, 80-87.	15.2	112
69	Testing Time-, Ignorance-, and Danger-Based Models of Tolerance. Journal of Immunology, 2001, 166, 3663-3671.	0.4	72
70	Danger: the view from the bottom of the cliff. Seminars in Immunology, 2000, 12, 231-238.	2.7	69
71	FcR-Mediated Inhibition of Cell Activation and Other Forms of Coinhibition. Critical Reviews in Immunology, 1998, 18, 525-544.	1.0	33
72	Hypogammaglobulinaemia occurs in Fas-deficient MRL-lpr mice following deletion of MHC class II molecules. Clinical and Experimental Immunology, 1997, 109, 473-479.	1.1	7

#	Article	lF	CITATIONS
73	Coâ€Stimulation and Coâ€Inhibition: Equal Partners in Regulation. Scandinavian Journal of Immunology, 1996, 43, 597-603.	1.3	41
74	Defective Antigen-Receptor-Mediated Regulation of Immunoglobulin Production in B Cells from Autoimmune Strains of Mice. Cellular Immunology, 1995, 164, 141-149.	1.4	11
75	Lipopolysaccharide-induced IgM production Is not suppressed by antigen receptor ligation in B cells from some autoimmune strains of mice. Immunologic Research, 1994, 13, 10-20.	1.3	4
76	Do lymphocytes require calibration?. Immunology and Cell Biology, 1994, 72, 508-512.	1.0	6
77	Immunoregulatory characteristics of the in vitro anti-ssDNA response. Immunologic Research, 1993, 12, 349-357.	1.3	2
78	REGULATION OF AN ANTI-SELF RESPONSE: LACK OF INFLUENCE OF EXOGENOUS DNA ON THE IN VITRO ANTI-DNA RESPONSE. Autoimmunity, 1992, 11, 281-287.	1.2	4
79	Mixed chimerism and split tolerance: Mechanisms and clinical correlations. , 0, .		1
80	The historical postulate is not the basis of selfâ€nonself discrimination: A response to Bretscher's proposal. Scandinavian Journal of Immunology, 0, , .	1.3	1