
William A Paxton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/95797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The HCV Envelope Glycoprotein Down-Modulates NF-κB Signalling and Associates With Stimulation of the Host Endoplasmic Reticulum Stress Pathway. Frontiers in Immunology, 2022, 13, 831695.	2.2	1
2	Implementation of corticosteroids in treatment of COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK: prospective, cohort study. The Lancet Digital Health, 2022, 4, e220-e234.	5.9	20
3	Mapping of SARS-CoV-2 IgM and IgG in gingival crevicular fluid: Antibody dynamics and linkage to severity of COVID-19 in hospital inpatients. Journal of Infection, 2022, 85, 152-160.	1.7	6
4	Ebola virus antibody decay–stimulation in a high proportion of survivors. Nature, 2021, 590, 468-472.	13.7	30
5	Generation of Liposomes to Study the Effect of Mycobacterium Tuberculosis Lipids on HIV-1 cis- and trans-Infections. International Journal of Molecular Sciences, 2021, 22, 1945.	1.8	4
6	Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK. Lancet Respiratory Medicine,the, 2021, 9, 699-711.	5.2	122
7	Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study. Lancet Respiratory Medicine,the, 2021, 9, 349-359.	5.2	161
8	Changes in in-hospital mortality in the first wave of COVID-19: a multicentre prospective observational cohort study using the WHO Clinical Characterisation Protocol UK. Lancet Respiratory Medicine,the, 2021, 9, 773-785.	5.2	78
9	Characterisation of in-hospital complications associated with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol UK: a prospective, multicentre cohort study. Lancet, The, 2021, 398, 223-237.	6.3	110
10	Non-steroidal anti-inflammatory drug use and outcomes of COVID-19 in the ISARIC Clinical Characterisation Protocol UK cohort: a matched, prospective cohort study. Lancet Rheumatology, The, 2021, 3, e498-e506.	2.2	58
11	Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort study. Lancet Microbe, The, 2021, 2, e354-e365.	3.4	216
12	Streptolysin O concentration and activity is central to in vivo phenotype and disease outcome in Group A Streptococcus infection. Scientific Reports, 2021, 11, 19011.	1.6	1
13	Measuring Proviral HIV-1 DNA: Hurdles and Improvements to an Assay Monitoring Integration Events Utilising Human Alu Repeat Sequences. Life, 2021, 11, 1410.	1.1	5
14	Outcome of Hospitalization for COVID-19 in Patients with Interstitial Lung Disease. An International Multicenter Study. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1656-1665.	2.5	171
15	Variation around the dominant viral genome sequence contributes to viral load and outcome in patients with Ebola virus disease. Genome Biology, 2020, 21, 238.	3.8	18
16	Measuring the Success of HIV-1 Cure Strategies. Frontiers in Cellular and Infection Microbiology, 2020, 10, 134.	1.8	34
17	Bile-salt stimulated lipase polymorphisms do not associate with HCV susceptibility. Virus Research, 2019, 274, 197715.	1.1	1
18	Schistosoma mansoni soluble egg antigen (SEA) and recombinant Omega-1 modulate induced CD4+	2.1	11

T-lymphocyte responses and HIV-1 infection in vitro. PLoS Pathogens, 2019, 15, e1007924.

#	Article	IF	CITATIONS
19	Comparative analysis and generation of a robust HIV-1 DNA quantification assay. Journal of Virological Methods, 2019, 263, 24-31.	1.0	9
20	SNP rs688 within the lowâ€density lipoprotein receptor (LDLâ€R) gene associates with HCV susceptibility. Liver International, 2019, 39, 463-469.	1.9	10
21	Detection, characterization, and enrollment of donors of Ebola convalescent plasma in Sierra Leone. Transfusion, 2018, 58, 1289-1298.	0.8	23
22	Blood CXCR3+ CD4 T Cells Are Enriched in Inducible Replication Competent HIV in Aviremic Antiretroviral Therapy-Treated Individuals. Frontiers in Immunology, 2018, 9, 144.	2.2	48
23	DC-SIGN Polymorphisms Associate with Risk of Hepatitis C Virus Infection Among Men who Have Sex with Men but not Among Injecting Drug Users. Journal of Infectious Diseases, 2018, 217, 353-357.	1.9	7
24	HIV-1 Transmission: Influence of Bodily Secretions. , 2018, , 920-928.		0
25	Utility of integrated HIV-1 DNA quantification in cure studies. Future Virology, 2017, 12, 215-225.	0.9	4
26	Brugia malayi Antigen (BmA) Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells. PLoS ONE, 2016, 11, e0146527.	1.1	2
27	Why Are Some HIV-1 Subtypes More "Wimpy―at Causing Disease?. EBioMedicine, 2016, 13, 27-28.	2.7	0
28	Association between gp120 envelope V1V2 and V4V5 variable loop profiles in a defined HIV-1 transmission cluster. Aids, 2015, 29, 1161-1171.	1.0	8
29	Colorectal Mucus Binds DC-SIGN and Inhibits HIV-1 Trans-Infection of CD4+ T-Lymphocytes. PLoS ONE, 2015, 10, e0122020.	1.1	11
30	Reactivation of Neutralized HIV-1 by Dendritic Cells Is Dependent on the Epitope Bound by the Antibody. Journal of Immunology, 2015, 195, 3759-3768.	0.4	4
31	Improved metastasis-free survival in nonadjuvantly treated postmenopausal breast cancer patients with chemokine receptor 5 del32 frameshift mutations. International Journal of Cancer, 2015, 136, 91-97.	2.3	16
32	Increased HIV-1 Activity in Anal High-Grade Squamous Intraepithelial Lesions Compared With Unaffected Anal Mucosa in Men Who Have Sex With Men. Clinical Infectious Diseases, 2014, 58, 1634-1637.	2.9	2
33	HIV-1 Transmission: Influence of Bodily Secretions. , 2014, , 1-10.		0
34	The search for a T cell line for testing novel antiviral strategies against HIV-1 isolates of diverse receptor tropism and subtype origin. Journal of Virological Methods, 2014, 203, 88-96.	1.0	8
35	Quantitation of HIV-1 DNA with a sensitive TaqMan assay that has broad subtype specificity. Journal of Virological Methods, 2013, 187, 94-102.	1.0	15
36	Human immunodeficiency virus type 1 gp120 envelope characteristics associated with disease progression differ in family members infected with genetically similar viruses. Journal of General Virology, 2013, 94, 20-29.	1.3	4

#	Article	IF	CITATIONS
37	HIV-1 Autologous Antibody Neutralization Associates with Mother to Child Transmission. PLoS ONE, 2013, 8, e69274.	1.1	21
38	Effects of helminths and Mycobacterium tuberculosis infection on HIV-1. Current Opinion in HIV and AIDS, 2012, 7, 260-267.	1.5	8
39	Transmission of Two Distinct HIV Type 1 Strains to an Individual That Were Harbored for Many Years by Another. AIDS Research and Human Retroviruses, 2012, 28, 225-227.	0.5	Ο
40	HIV Type 1 Mother-to-Child Transmission Facilitated by Distinctive Glycosylation Sites in the gp120 Envelope Glycoprotein. AIDS Research and Human Retroviruses, 2012, 28, 715-724.	0.5	10
41	Use of (alternative) coreceptors for HIV entry. Current Opinion in HIV and AIDS, 2012, 7, 440-449.	1.5	19
42	HIV-1 Disease Progression Is Associated with Bile-Salt Stimulated Lipase (BSSL) Gene Polymorphism. PLoS ONE, 2012, 7, e32534.	1.1	14
43	Sexual Transmission of Hepatitis C Virus in Human Immunodeficiency Virus-Negative Men Who Have Sex With Men: A Series of Case Reports. Sexually Transmitted Diseases, 2011, 38, 102-104.	0.8	49
44	Innate immune factors associated with HIV-1 transmission. Current Opinion in HIV and AIDS, 2011, 6, 341-347.	1.5	11
45	Altered dynamics and differential infection profiles of lymphoid and myeloid cell subsets during acute and chronic HIV-1 infection. Journal of Leukocyte Biology, 2011, 89, 785-795.	1.5	34
46	Binding of Human Milk to Pathogen Receptor DC-SIGN Varies with Bile Salt-Stimulated Lipase (BSSL) Gene Polymorphism. PLoS ONE, 2011, 6, e17316.	1.1	24
47	HIV-1 (co)Receptors: Implications for Vaccine and Therapy Design. Current Pharmaceutical Design, 2010, 16, 3701-3715.	0.9	5
48	Generation of representative primary virus isolates from blood plasma after isolation of HIV-1 with CD44 MicroBeads. Archives of Virology, 2010, 155, 2017-2022.	0.9	7
49	Generation of HIV-1 primary isolates representative of plasma variants using the U87.CD4 cell line. Journal of Virological Methods, 2010, 169, 341-350.	1.0	Ο
50	Varied sensitivity to therapy of HIV-1 strains in CD4+ lymphocyte sub-populations upon ART initiation. AIDS Research and Therapy, 2010, 7, 42.	0.7	3
51	Preferential infection and depletion of <i>Mycobacterium tuberculosis</i> –specific CD4 T cells after HIV-1 infection. Journal of Experimental Medicine, 2010, 207, 2869-2881.	4.2	224
52	Differences in HIV Type 1 RNA Plasma Load Profile of Closely Related Cocirculating Ethiopian Subtype C Strains: C and C′. AIDS Research and Human Retroviruses, 2010, 26, 805-813.	0.5	10
53	Optimization of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins with V1/V2 Deleted, Using Virus Evolution. Journal of Virology, 2009, 83, 368-383.	1.5	43
54	Mucin 6 in seminal plasma binds DC-SIGN and potently blocks dendritic cell mediated transfer of HIV-1 to CD4+ T-lymphocytes. Virology, 2009, 391, 203-211.	1.1	51

#	Article	IF	CITATIONS
55	Lack of in vivo compartmentalization among HIV-1 infected naÃ⁻ve and memory CD4+ T cell subsets. Virology, 2009, 393, 24-32.	1.1	30
56	HIV vaccine: it may take two to tango, but no party time yet. Retrovirology, 2009, 6, 88.	0.9	7
57	RNA Detection and Subtype C Assessment of HIV-1 in Infants with Diarrhea in Ethiopia. Open AIDS Journal, 2009, 3, 19-23.	0.1	0
58	Increased virus replication in mammalian cells by blocking intracellular innate defense responses. Gene Therapy, 2008, 15, 545-552.	2.3	50
59	The carbohydrate at asparagine 386 on HIV-1 gp120 is not essential for protein folding and function but is involved in immune evasion. Retrovirology, 2008, 5, 10.	0.9	42
60	Only Five of 10 Strictly Conserved Disulfide Bonds Are Essential for Folding and Eight for Function of the HIV-1 Envelope Glycoprotein. Molecular Biology of the Cell, 2008, 19, 4298-4309.	0.9	44
61	Dendritic Cells Preferentially Transfer CXCR4-Using Human Immunodeficiency Virus Type 1 Variants to CD4 ⁺ T Lymphocytes in <i>trans</i> . Journal of Virology, 2008, 82, 7886-7896.	1.5	25
62	Use of Dried Spots of Whole Blood, Plasma, and Mother's Milk Collected on Filter Paper for Measurement of Human Immunodeficiency Virus Type 1 Burden. Journal of Clinical Microbiology, 2007, 45, 891-896.	1.8	46
63	Characterization of An HIV-1 Group M Variant That Is Distinct from The Known Subtypes. AIDS Research and Human Retroviruses, 2007, 23, 466-470.	0.5	11
64	Efficient Capture of Antibody Neutralized HIV-1 by Cells Expressing DC-SIGN and Transfer to CD4+ T Lymphocytes. Journal of Immunology, 2007, 178, 3177-3185.	0.4	75
65	Effect of chloroquine on reducing HIV-1 replication in vitro and the DC-SIGN mediated transfer of virus to CD4+ T-lymphocytes. Retrovirology, 2007, 4, 6.	0.9	53
66	Statins Disrupt CCR5 and RANTES Expression Levels in CD4+ T Lymphocytes In Vitro and Preferentially Decrease Infection of R5 Versus X4 HIV-1. PLoS ONE, 2007, 2, e470.	1.1	37
67	Vaccine The controversial story of medicine's greatest lifesaver. Journal of Clinical Investigation, 2007, 117, 2017-2017.	3.9	1
68	Interaction of HIV-1 with dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin-expressing cells is influenced by gp120 envelope modifications associated with disease progression. FEBS Journal, 2006, 273, 4944-4958.	2.2	16
69	CTL escape and increased viremia irrespective of HIV-specific CD4+ T-helper responses in two HIV-infected individuals. Virology, 2006, 345, 209-219.	1.1	19
70	Bile Salt-Stimulated Lipase from Human Milk Binds DC-SIGN and Inhibits Human Immunodeficiency Virus Type 1 Transfer to CD4 + T Cells. Antimicrobial Agents and Chemotherapy, 2006, 50, 3367-3374.	1.4	72
71	Broad Cross-Clade T-Cell Responses to Gag in Individuals Infected with Human Immunodeficiency Virus Type 1 Non-B Clades (A to G): Importance of HLA Anchor Residue Conservation. Journal of Virology, 2005, 79, 11247-11258.	1.5	41
72	Lewis X component in human milk binds DC-SIGN and inhibits HIV-1 transfer to CD4+ T lymphocytes. Journal of Clinical Investigation, 2005, 115, 3256-3264.	3.9	161

#	Article	IF	CITATIONS
73	Intrapatient Alterations in the Human Immunodeficiency Virus Type 1 gp120 V1V2 and V3 Regions Differentially Modulate Coreceptor Usage, Virus Inhibition by CC/CXC Chemokines, Soluble CD4, and the b12 and 2G12 Monoclonal Antibodies. Journal of Virology, 2004, 78, 524-530.	1.5	89
74	Phenotypic and Genotypic Comparisons of CCR5- and CXCR4-Tropic Human Immunodeficiency Virus Type 1 Biological Clones Isolated from Subtype C-Infected Individuals. Journal of Virology, 2004, 78, 2841-2852.	1.5	57
75	Identification of Sequential Viral Escape Mutants Associated with Altered T-Cell Responses in a Human Immunodeficiency Virus Type 1-Infected Individual. Journal of Virology, 2003, 77, 12430-12440.	1.5	62
76	N-Linked Glycosylation of the HIV Type-1 gp120 Envelope Glycoprotein as a Major Determinant of CCR5 and CXCR4 Coreceptor Utilization. Journal of Biological Chemistry, 2001, 276, 13433-13441.	1.6	198
77	RANTES Production from CD4+Lymphocytes Correlates with Host Genotype and Rates of Human Immunodeficiency Virus Type 1 Disease Progression. Journal of Infectious Diseases, 2001, 183, 1678-1681.	1.9	43
78	Up-regulation of HIV coreceptors CXCR4 and CCR5 on CD4+ T cells during human endotoxemia and after stimulation with (myco)bacterial antigens: the role of cytokines. Blood, 2000, 96, 2649-2654.	0.6	79
79	Up-regulation of HIV coreceptors CXCR4 and CCR5 on CD4+ T cells during human endotoxemia and after stimulation with (myco)bacterial antigens: the role of cytokines. Blood, 2000, 96, 2649-2654.	0.6	35
80	HIV-1 Transmission. , 2000, , 1-17.		1
81	HIV-1 infectability of CD4+ lymphocytes with relation to β-chemokines and the CCR5 coreceptor. Immunology Letters, 1999, 66, 71-75.	1.1	27
82	Reduced HIV-1 Infectability of CD4+Lymphocytes from Exposed-Uninfected Individuals: Association with Low Expression of CCR5 and High Production of β-Chemokines. Virology, 1998, 244, 66-73.	1.1	153
83	Chemokine receptor allelic polymorphisms: Relationships to HIV resistance and disease progression. Seminars in Immunology, 1998, 10, 187-194.	2.7	59
84	Genetic Subtype-Independent Inhibition of Human Immunodeficiency Virus Type 1 Replication by CC and CXC Chemokines. Journal of Virology, 1998, 72, 396-404.	1.5	128
85	Immature Dendritic Cells Selectively Replicate Macrophagetropic (M-Tropic) Human Immunodeficiency Virus Type 1, while Mature Cells Efficiently Transmit both M- and T-Tropic Virus to T Cells. Journal of Virology, 1998, 72, 2733-2737.	1.5	308
86	CCR5 Levels and Expression Pattern Correlate with Infectability by Macrophage-tropic HIV-1, In Vitro. Journal of Experimental Medicine, 1997, 185, 1681-1692.	4.2	728
87	Mechanisms of resistance to HIV infection. Seminars in Immunopathology, 1997, 18, 323-340.	4.0	13
88	Mechanisms of resistance to HIV infection. , 1997, , 71-88.		0
89	Homozygous Defect in HIV-1 Coreceptor Accounts for Resistance of Some Multiply-Exposed Individuals to HIV-1 Infection. Cell, 1996, 86, 367-377.	13.5	2,964
90	Perspective: Research Highlights at the Aaron Diamond AIDS Research Center : The β-Chemokines, HIV Type 1 Second Receptors, and Exposed Uninfected Persons. AIDS Research and Human Retroviruses, 1996, 12, 1203-1207.	0.5	44

#	Article	IF	CITATIONS
91	Relative resistance to HIV–1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high–risk sexual exposures. Nature Medicine, 1996, 2, 412-417.	15.2	676
92	The role of a mutant CCR5 allele in HIV–1 transmission and disease progression. Nature Medicine, 1996, 2, 1240-1243.	15.2	1,346
93	HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature, 1996, 381, 667-673.	13.7	3,257
94	Efficient Interaction of HIV-1 with Purified Dendritic Cells via Multiple Chemokine Coreceptors. Journal of Experimental Medicine, 1996, 184, 2433-2438.	4.2	250
95	Macrophages and CD4+ T lymphocytes from two multiply exposed, uninfected individuals resist infection with primary non-syncytium-inducing isolates of human immunodeficiency virus type 1. Journal of Virology, 1996, 70, 8758-8764.	1.5	82
96	Incorporation of Vpr into human immunodeficiency virus type 1 virions: requirement for the p6 region of gag and mutational analysis. Journal of Virology, 1993, 67, 7229-7237.	1.5	377