Hyunwoo Yuk

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9579694/hyunwoo-yuk-publications-by-year.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

40 6,510 29 48 g-index

48 8,753 19.1 6.78 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
40	An off-the-shelf bioadhesive patch for sutureless repair of gastrointestinal defects <i>Science Translational Medicine</i> , 2022 , 14, eabh2857	17.5	10
39	Bioadhesives: A Multifunctional Origami Patch for Minimally Invasive Tissue Sealing (Adv. Mater. 11/2021). <i>Advanced Materials</i> , 2021 , 33, 2170083	24	
38	Hydrogel-based biocontainment of bacteria for continuous sensing and computation. <i>Nature Chemical Biology</i> , 2021 , 17, 724-731	11.7	36
37	Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. <i>Chemical Reviews</i> , 2021 , 121, 4309-4372	68.1	145
36	Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. <i>Nature Communications</i> , 2021 , 12, 3435	17.4	36
35	Electrical bioadhesive interface for bioelectronics. <i>Nature Materials</i> , 2021 , 20, 229-236	27	136
34	A Multifunctional Origami Patch for Minimally Invasive Tissue Sealing. <i>Advanced Materials</i> , 2021 , 33, e20	0 <u>0</u> 7667	7 30
33	Modular Integration of Hydrogel Neural Interfaces. ACS Central Science, 2021, 7, 1516-1523	16.8	3
32	Rapid and coagulation-independent haemostatic sealing by a paste inspired by barnacle glue. <i>Nature Biomedical Engineering</i> , 2021 , 5, 1131-1142	19	33
31	Instant tough bioadhesive with triggerable benign detachment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 15497-15503	11.5	91
30	Strong adhesion of wet conducting polymers on diverse substrates. <i>Science Advances</i> , 2020 , 6, eaay539	414.3	63
29	3D printing of conducting polymers. <i>Nature Communications</i> , 2020 , 11, 1604	17.4	263
28	An organosynthetic dynamic heart model with enhanced biomimicry guided by cardiac diffusion tensor imaging. <i>Science Robotics</i> , 2020 , 5,	18.6	10
27	Hydration and swelling of dry polymers for wet adhesion. <i>Journal of the Mechanics and Physics of Solids</i> , 2020 , 137, 103863	5	24
26	Biocompatible hydrogel ostomy adhesive. <i>Medical Devices & Sensors</i> , 2020 , 3, e10132	1.6	2
25	Ingestible hydrogel device. <i>Nature Communications</i> , 2019 , 10, 493	17.4	97
24	Anti-fatigue-fracture hydrogels. <i>Science Advances</i> , 2019 , 5, eaau8528	14.3	155

23	Hydrogel bioelectronics. <i>Chemical Society Reviews</i> , 2019 , 48, 1642-1667	58.5	742
22	Pure PEDOT:PSS hydrogels. <i>Nature Communications</i> , 2019 , 10, 1043	17.4	271
21	Dry double-sided tape for adhesion of wet tissues and devices. <i>Nature</i> , 2019 , 575, 169-174	50.4	375
20	Multifunctional "Hydrogel Skins" on Diverse Polymers with Arbitrary Shapes. <i>Advanced Materials</i> , 2019 , 31, e1807101	24	146
19	Kirigami enhances film adhesion. <i>Soft Matter</i> , 2018 , 14, 2515-2525	3.6	46
18	Material-stiffening suppresses elastic fingering and fringe instabilities. <i>International Journal of Solids and Structures</i> , 2018 , 139-140, 96-104	3.1	9
17	3D Printing: A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks (Adv. Mater. 6/2018). <i>Advanced Materials</i> , 2018 , 30, 1870037	24	5
16	Printing ferromagnetic domains for untethered fast-transforming soft materials. <i>Nature</i> , 2018 , 558, 27	4 <i>-5</i> 27.2p	842
15	A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks. <i>Advanced Materials</i> , 2018 , 30, 1704028	24	137
14	3D Printing of Living Responsive Materials and Devices. <i>Advanced Materials</i> , 2018 , 30, 1704821	24	182
13	Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. <i>Nature Communications</i> , 2017 , 8, 14230	17.4	519
12	Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 2200-2	.2 0 5 ⁵	144
11	Tough and tunable adhesion of hydrogels: experiments and models. <i>Acta Mechanica Sinica/Lixue Xuebao</i> , 2017 , 33, 543-554	2	44
10	Impermeable Robust Hydrogels via Hybrid Lamination. <i>Advanced Healthcare Materials</i> , 2017 , 6, 170052	010.1	47
9	Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. <i>Nature Communications</i> , 2016 , 7, 12028	17.4	486
8	Stretchable Hydrogel Electronics and Devices. <i>Advanced Materials</i> , 2016 , 28, 4497-505	24	418
7	Tough bonding of hydrogels to diverse non-porous durfaces. <i>Nature Materials</i> , 2016 , 15, 190-6	27	546
6	Fringe instability in constrained soft elastic layers. <i>Soft Matter</i> , 2016 , 12, 8899-8906	3.6	16

5	Highly Stretchable, Strain Sensing Hydrogel Optical Fibers. <i>Advanced Materials</i> , 2016 , 28, 10244-10249	24	236
4	Predicting fracture energies and crack-tip fields of soft tough materials. <i>Extreme Mechanics Letters</i> , 2015 , 4, 1-8	3.9	84
3	Shape memory alloy-based small crawling robots inspired by C. elegans. <i>Bioinspiration and Biomimetics</i> , 2011 , 6, 046002	2.6	43
2	Tough Hydrogel-Based Biocontainment of Engineered Organisms for Continuous, Self-Powered Sensing and Computation		4
1	Barnacle-Inspired Paste for Instant Hemostatic Tissue Sealing		1