Yong-Zheng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579557/publications.pdf

Version: 2024-02-01

		257450	414414
82	1,595	24	32
papers	citations	h-index	g-index
83	83	83	1413
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Complementary Copper-Catalyzed and Electrochemical Aminosulfonylation of <i>O</i> -Homoallyl Benzimidates and <i>N</i> -Alkenyl Amidines with Sodium Sulfinates. Organic Letters, 2022, 24, 1405-1411.	4.6	9
2	Transition-metal-free, direct C H radical trifluoromethylation of nitroimidazoles with Togni's reagent. Tetrahedron Letters, 2022, 92, 153659.	1.4	8
3	Enzymatic approaches to site-selective oxidation of quinoline and derivatives. Organic and Biomolecular Chemistry, 2022, 20, 2580-2600.	2.8	4
4	Copper-Catalyzed $[5+1]$ Cyclization of <i>o</i> -Pyrrolo Anilines and Heterocyclic <i>N</i> -Tosylhydrazones for Access to Spiro-dihydropyrrolo $[1,2-\langle i>a]$ quinoxaline Derivatives. Journal of Organic Chemistry, 2022, 87, 4112-4123.	3.2	6
5	Stereodivergent Synthesis of Epoxides and Oxazolidinones via the Halohydrin Dehalogenase-Catalyzed Desymmetrization Strategy. ACS Catalysis, 2022, 12, 6285-6293.	11.2	18
6	Highly Enantioselective Hydroxylation of 3-Arylpropanenitriles to Access Chiral \hat{l}^2 -Hydroxy Nitriles by Engineering of P450pyr Monooxygenase. Organic Process Research and Development, 2022, 26, 2046-2051.	2.7	4
7	Palladium-catalyzed asymmetric allylic alkylation of 3-aminooxindoles to access chiral homoallylic aminooxindoles. Organic and Biomolecular Chemistry, 2021, 19, 4720-4725.	2.8	3
8	Palladium-catalyzed $[2 + 2 + 1]$ annulation: access to chromone fused cyclopentanones with cyclopropenone as the CO source. Organic Chemistry Frontiers, 2021, 8, 3082-3090.	4.5	19
9	Chiral Phosphoric Acid Catalyzed (4+1) Annulation of 3â€Diazooxindoles/4â€Diazooxisoquinolines with <i>para</i> â€Quinone Methides to Access Chiral Spiro[dihydrobenzofuranâ€2,3â€2â€oxindoles/2,4â€2â€oxisoquinolines]. Advanced Synthesis and Catalysis, 2021 363, 1702-1713.	4.3	34
10	Recent progress on discovery and research of aldoxime dehydratases. Green Synthesis and Catalysis, 2021, 2, 179-186.	6.8	20
11	Enzymatic Kinetic Resolution of Bulky Spiro-Epoxyoxindoles via Halohydrin Dehalogenase-Catalyzed Enantio- and Regioselective Azidolysis. ACS Catalysis, 2021, 11, 9066-9072.	11.2	25
12	Stereoselective Synthesis of Enantiopure Oxazolidinones via Biocatalytic Asymmetric Aminohydroxylation of Alkenes. Advanced Synthesis and Catalysis, 2021, 363, 4343-4348.	4.3	12
13	Sulfoxide Reductases and Applications in Biocatalytic Preparation of Chiral Sulfoxides: A Mini-Review. Frontiers in Chemistry, 2021, 9, 714899.	3.6	13
14	Regiodivergent and stereoselective hydroxyazidation of alkenes by biocatalytic cascades. IScience, 2021, 24, 102883.	4.1	15
15	Anticancer potential of indirubins in medicinal chemistry: Biological activity, structural modification, and structure-activity relationship. European Journal of Medicinal Chemistry, 2021, 223, 113652.	5.5	29
16	Aziridine used as a vinylidene unit in palladium-catalyzed $[2 + 2 + 1]$ domino annulation. Organic Chemistry Frontiers, 2021, 8, 3413-3420.	4.5	14
17	Diazotrifluoroethyl Radical: A CF ₃ -Containing Building Block in [3 + 2] Cycloaddition. Organic Letters, 2021, 23, 9256-9261.	4.6	17
18	Synthesis of Chiral 5â€Arylâ€2â€oxazolidinones via Halohydrin Dehalogenaseâ€Catalyzed Enantio―and Regioselective Ringâ€Opening of Styrene Oxides. Advanced Synthesis and Catalysis, 2020, 362, 1201-1207.	4.3	18

#	Article	IF	CITATIONS
19	Discovery and application of methionine sulfoxide reductase B for preparation of (S)-sulfoxides through kinetic resolution. Catalysis Communications, 2020, 136, 105908.	3.3	11
20	Catalytic Enantioselective Dearomatization/Rearomatization of 2-Nitroindoles to Access 3-Indolyl-3′-Aryl-/Alkyloxindoles: Application in the Formal Synthesis of Cyclotryptamine Alkaloids. Organic Letters, 2020, 22, 7088-7093.	4.6	24
21	Efficient Assembly of Molecular Complexity Enabled by Palladiumâ€Catalyzed Heck Coupling/C(sp 2)â^'H Activation Cascade. Advanced Synthesis and Catalysis, 2020, 362, 3655-3661.	4.3	15
22	Identification of H2S/NO-donating artemisinin derivatives as potential antileukemic agents. RSC Advances, 2020, 10, 501-511.	3.6	2
23	Synthesis of chromone-containing polycyclic compounds $\langle i \rangle via \langle j \rangle$ palladium-catalyzed [2 + 2 + 1] annulation. Organic and Biomolecular Chemistry, 2020, 18, 1112-1116.	2.8	13
24	Characterization of a Selfâ€Sufficient Cytochrome P450 Monooxygenase from <i>Deinococcus apachensis</i> for Enantioselective Benzylic Hydroxylation. ChemBioChem, 2020, 21, 1820-1825.	2.6	13
25	Regioselective Ringâ€Opening of Styrene Oxide Derivatives Using Halohydrin Dehalogenase for Synthesis of 4â€Aryloxazolidinones. Advanced Synthesis and Catalysis, 2019, 361, 4651-4655.	4.3	24
26	Cascade bio-hydroxylation and dehalogenation for one-pot enantioselective synthesis of optically active \hat{l}^2 -halohydrins from halohydrocarbons. Green Chemistry, 2019, 21, 4324-4328.	9.0	28
27	<i>Ex Situ</i> Generation of Difluorodiazoethane (CF ₂ HCHN ₂): Application in the Regioselective Synthesis of CF ₂ H-Containing Pyrazoles. Organic Letters, 2019, 21, 8751-8755.	4.6	32
28	2,2-Bifunctionalization of Norbornene in Palladium-Catalyzed Domino Annulation. Organic Letters, 2019, 21, 8857-8860.	4.6	31
29	Highly α-position regioselective ring-opening of epoxides catalyzed by halohydrin dehalogenase from llumatobacter coccineus: a biocatalytic approach to 2-azido-2-aryl-1-ols. RSC Advances, 2019, 9, 16418-16422.	3.6	16
30	Identification of MsrA homologues for the preparation of ($\langle i \rangle R \langle i \rangle$)-sulfoxides at high substrate concentrations. Organic and Biomolecular Chemistry, 2019, 17, 3381-3388.	2.8	16
31	Organocatalyzed Asymmetric Dearomative Aza-Michael/Michael Addition Cascade of 2-Nitrobenzofurans and 2-Nitrobenzothiophenes with 2-Aminochalcones. Journal of Organic Chemistry, 2019, 84, 4381-4391.	3.2	52
32	Novel hybrids of podophyllotoxin and formononetin inhibit the growth, migration and invasion of lung cancer cells. Bioorganic Chemistry, 2019, 85, 445-454.	4.1	19
33	Design, synthesis, and biological evaluation of indole carboxylic acid esters of podophyllotoxin as antiproliferative agents. Medicinal Chemistry Research, 2019, 28, 81-94.	2.4	9
34	Organocatalyzed Enantioselective Conjugated Addition of Sodium Bisulfite to \hat{l}^2 -Trifluoromethyl- \hat{l}_{\pm},\hat{l}^2 -unsaturated Ketones. Journal of Organic Chemistry, 2018, 83, 5771-5777.	3.2	19
35	Biocatalytic Preparation of Chiral Sulfoxides through Asymmetric Reductive Resolution by Methionine Sulfoxide Reductaseâ€A. ChemCatChem, 2018, 10, 3284-3290.	3.7	16
36	Design, synthesis and antineoplastic activity of novel hybrids of podophyllotoxin and indirubin against human leukaemia cancer cells as multifunctional anti-MDR agents. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1817-1824.	2.2	28

#	Article	IF	Citations
37	Deracemization of Phenylâ€Substituted 2â€Methylâ€1,2,3,4â€Tetrahydroquinolines by a Recombinant Monoamine Oxidase from <i>Pseudomonas monteilii</i> ZMUâ€T01. ChemCatChem, 2018, 10, 2374-2377.	3.7	9
38	An asymmetric organocatalytic vinylogous Mannich reaction of 3-methyl-5-arylfuran-2(3 <i>H</i>)-ones with <i>N</i> -(2-pyridinesulfonyl) imines: enantioselective synthesis of \hat{l} -amino \hat{l} - \hat{l} -disubstituted butenolides. Organic and Biomolecular Chemistry, 2018, 16, 1636-1640.	2.8	14
39	Zincâ€Catalyzed Enantioselective Dearomative [3+2] Cycloaddition Reaction of 3â€Nitrobenzothiophenes and 3â€Nitrothieno[2,3â€xi>b) yridine with 3â€Isothiocyanato Oxindoles. Advanced Synthesis and Catalysis, 2018, 360, 1420-1425.	4.3	43
40	Znâ€Catalyzed Diastereo―and Enantioselective Dearomative [3+2] Cycloaddition Reaction of 2â€Nitroindoles and 2â€Nitrobenzothiophenes. Advanced Synthesis and Catalysis, 2018, 360, 2482-2487.	4.3	44
41	Design, synthesis and biological evaluation of novel nitric oxide-donating podophyllotoxin derivatives as potential antiproliferative agents against multi-drug resistant leukemia cells. RSC Advances, 2018, 8, 34266-34274.	3.6	6
42	Biocatalytical Asymmetric Sulfoxidation by Identifying Cytochrome P450 from <i>Parvibaculum Lavamentivorans</i> DSâ€1. ChemCatChem, 2018, 10, 5410-5413.	3.7	14
43	Identification and characterization of a highly S-enantioselective halohydrin dehalogenase from Tsukamurella sp. 1534 for kinetic resolution of halohydrins. Bioorganic Chemistry, 2018, 81, 529-535.	4.1	11
44	AcOH-catalyzed aza-Michael addition/N-nitrosation: An efficient approach to CF2HCH2-containing N-nitrosoamines. Tetrahedron, 2018, 74, 3904-3911.	1.9	6
45	Asymmetric [3 + 2] Cycloaddition Reaction of Isatin-Derived MBH Carbonates with 3-Methyleneoxindoles: Enantioselective Synthesis of 3,3′-Cyclopentenyldispirooxindoles Incorporating Two Adjacent Quaternary Spirostereocenters. Journal of Organic Chemistry, 2018, 83, 10465-10475.	3.2	39
46	Organocatalytic Asymmetric [3 + 2] Cycloaddition of <i>N</i> -2,2,2-Trifluoroethylisatin Ketimines with \hat{I}^2 -Trifluoromethyl Electron-Deficient Alkenes: Access to Vicinally Bis(trifluoromethyl)-Substituted 3,2â \in 2-Pyrrolidinyl Spirooxindoles. Organic Letters, 2018, 20, 4453-4457.	4.6	90
47	Synthesis, antitumor evaluation and molecular docking study of a novel podophyllotoxin-lonidamine hybrid. Medicinal Chemistry Research, 2018, 27, 2231-2238.	2.4	11
48	A Protocol for the Synthesis of CF $<$ sub $>$ 2 $<$ /sub $>$ H-Containing Pyrazolo[1,5- $<$ i $>c<$ /i $>$]quinazolines from 3-Ylideneoxindoles and in Situ Generated CF $<$ sub $>$ 2 $<$ /sub $>$ HCHN $<$ sub $>$ 2 $<$ /sub $>$. Journal of Organic Chemistry, 2018, 83, 6556-6565.	3.2	19
49	Podophyllotoxin–pterostilbene fused conjugates as potential multifunctional antineoplastic agents against human uveal melanoma cells. RSC Advances, 2017, 7, 10601-10608.	3.6	10
50	Enantioselective synthesis of 1,2,3,4-tetrahydroquinoline-4-ols and 2,3-dihydroquinolin-4(1H)-ones via a sequential asymmetric hydroxylation/diastereoselective oxidation process using Rhodococcus equi ZMU-LK19. Organic and Biomolecular Chemistry, 2017, 15, 3580-3584.	2.8	12
51	Asymmetric combinational "metal-biocatalytic system― One approach to chiral 2-subsituted-tetrahydroquinoline-4-ols towards two-step one-pot processes in aqueous media. Tetrahedron Letters, 2017, 58, 2252-2254.	1.4	6
52	Sequential Nucleophilic <i>C</i> (sp ³)â€Benzylation/C(sp ²)–H Arylation for the Synthesis of Spiro[oxindoleâ€3,5′â€pyrrolo[2,1â€ <i>a</i>]isoquinolines]. European Journal of Organic Chemistry, 2017, 2017, 3179-3186.	2.4	13
53	Diastereoselective [3 + 2] cycloaddition of 3-ylideneoxindoles with in situ generated CF ₂ HCHN ₂ : syntheses of CF ₂ H-containing spirooxindoles. Organic and Biomolecular Chemistry, 2017, 15, 5571-5578.	2.8	22
54	Synthesis and biological evaluation of novel podophyllotoxin-NSAIDs conjugates as multifunctional anti-MDR agents against resistant human hepatocellular carcinoma Bel-7402/5-FU cells. European Journal of Medicinal Chemistry, 2017, 131, 81-91.	5 . 5	28

#	Article	IF	CITATIONS
55	Biocatalytic $\hat{l}\pm\hat{a}\in O$ xidation of Cyclic Amines and $\langle i\rangle N\langle i\rangle \hat{a}\in M$ ethylanilines for the Synthesis of Lactams and Formamides. ChemCatChem, 2017, 9, 937-940.	3.7	15
56	Synthesis of Phenanthridines through Palladiumâ€Catalyzed Cascade Reaction of 2â€Haloâ€∢i>Nà6€Msâ€arylamines with Benzyl Halides/Sulfonates. European Journal of Organic Chemistry, 2017, 2017, 996-1003.	2.4	21
57	An enantioselective synthesis of spiro-oxindole-based 3,4-dihydropyrroles via a Michael/cyclization cascade of 3-aminooxindoles with 2-enoylpyridines. Organic and Biomolecular Chemistry, 2017, 15, 8518-8522.	2.8	25
58	Syntheses of CF2H-containing spirocyclopropyloxindoles from in situ generated CF2HCHN2 and 3-ylideneoxindoles. Tetrahedron, 2017, 73, 5806-5812.	1.9	18
59	Synthesis of 2,3′-spirobi[indolin]-2-ones enabled by a tandem nucleophilic benzylation/C(sp ²)–N cross-coupling reaction sequence. Organic and Biomolecular Chemistry, 2017, 15, 5887-5892.	2.8	9
60	Asymmetric reductive resolution of racemic sulfoxides by recombinant methionine sulfoxide reductase from a pseudomonas monteilii strain. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S588-S592.	1.8	13
61	RNAâ€seq transcriptome analysis of a <i>Pseudomonas</i> strain with diversified catalytic properties growth under different culture medium. MicrobiologyOpen, 2016, 5, 626-636.	3.0	18
62	Microwave-assisted one-pot syntheses of 4-aminoquinazolines. Green Processing and Synthesis, 2016, 5, .	3.4	5
63	Bioreduction of the C C double bond with Pseudomonas monteilii ZMU-T17: one approach to 3-monosubstituted oxindoles. Tetrahedron, 2016, 72, 3098-3104.	1.9	6
64	Bio-mediated oxidative resolution of racemic 2-substituted 1,2,3,4-tetrahydroquinolines. Tetrahedron Letters, 2016, 57, 2403-2405.	1.4	11
65	Crystal structure of 4-(4-pyridinyl)-1-naphthoic acid, C16H11NO2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2016, 231, 565-567.	0.3	0
66	Aromatic heterocyclic esters of podophyllotoxin exert anti-MDR activity in human leukemia K562/ADR cells via ROS/MAPK signaling pathways. European Journal of Medicinal Chemistry, 2016, 123, 226-235.	5 . 5	36
67	Design, synthesis and evaluation of the multidrug resistance-reversing activity of pyridine acid esters of podophyllotoxin in human leukemia cells. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4466-4471.	2.2	18
68	Crystal structure of (Z)-2-((2-bromo-1-phenylvinyl)oxy)benzonitrile, C15H10BrNO. Zeitschrift Fur Kristallographie - New Crystal Structures, 2016, 231, 547-548.	0.3	0
69	Organocatalytic Asymmetric Mannich Reaction of 3-Hydroxyoxindoles/3-Aminooxindoles with in Situ Generated <i>N</i> -Boc-Protected Aldimines for the Synthesis of Vicinal Oxindole–Diamines/Amino Alcohols. Journal of Organic Chemistry, 2016, 81, 5270-5277.	3.2	33
70	Synthesis of superparamagnetic carboxymethyl chitosan/sodium alginate nanosphere and its application for immobilizing î±-amylase. Carbohydrate Polymers, 2016, 151, 600-605.	10.2	31
71	Potential anti-MDR agents based on the podophyllotoxin scaffold: synthesis and antiproliferative activity evaluation against chronic myeloid leukemia cells by activating MAPK signaling pathways. RSC Advances, 2016, 6, 2895-2903.	3.6	20
72	Synthesis and biological evaluation of a novel artesunate–podophyllotoxin conjugate as anticancer agent. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 38-42.	2.2	25

#	Article	IF	CITATION
73	Novozyme 435 lipase mediated enantioselective kinetic resolution: a facile method for the synthesis of chiral tetrahydroquinolin-4-ol and tetrahydro-1H-benzo[b]azepin-5-ol derivatives. Tetrahedron, 2015, 71, 4738-4744.	1.9	15
74	Palladium-Catalyzed Nucleophilic Substitution/C–H Activation/Aromatization Cascade Reaction: One Approach To Construct 6-Unsubstituted Phenanthridines. Journal of Organic Chemistry, 2015, 80, 11580-11587.	3.2	36
75	Novel isatin derivatives of podophyllotoxin: synthesis and cytotoxic evaluation against human leukaemia cancer cells as potent anti-MDR agents. RSC Advances, 2015, 5, 97816-97823.	3.6	26
76	Regio- and stereoselective benzylic hydroxylation to synthesize chiral tetrahydroquinolin-4-ol and tetrahydro-1H-benzo[b]azepin-5-ol with Pseudomonas plecoglossicidas. Journal of Molecular Catalysis B: Enzymatic, 2014, 110, 87-91.	1.8	18
77	Stereoselective oxidation of sulfides to optically active sulfoxides with resting cells of Pseudomonas monteilii CCTCC M2013683. Journal of Molecular Catalysis B: Enzymatic, 2014, 106, 100-104.	1.8	26
78	Enzyme-catalyzed asymmetric synthesis of optically active (R)- and (S)-ethyl -4-phenyl-4-hydroxybutyrate with microbial cells. Biocatalysis and Biotransformation, 2013, 31, 66-70.	2.0	6
79	Highâ€Throughput Method for Determining the Enantioselectivity of Enzymeâ€Catalyzed Hydroxylations Based on Mass Spectrometry. Angewandte Chemie - International Edition, 2010, 49, 5278-5283.	13.8	44
80	Enantioselective Benzylic Hydroxylation with <i>Pseudomonas monteilii</i> TAâ€5: A Simple Method for the Syntheses of (<i>R</i>)â€Benzylic Alcohols Containing Reactive Functional Groups. Advanced Synthesis and Catalysis, 2009, 351, 2107-2112.	4.3	32
81	Enantioselective benzylic hydroxylation of indan and tetralin with Pseudomonas monteilii TA-5. Tetrahedron: Asymmetry, 2009, 20, 1206-1211.	1.8	18
82	Enantiocomplementary preparation of (S)- and (R)-mandelic acid derivatives via \hat{l} ±-hydroxylation of 2-arylacetic acid derivatives and reduction of \hat{l} ±-ketoester using microbial whole cells. Tetrahedron: Asymmetry, 2007, 18, 2537-2540.	1.8	25