Adam P Piotrowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential evolution and particle swarm optimization against COVID-19. Artificial Intelligence Review, 2022, 55, 2149-2219.	9.7	3
2	Air2water model with nine parameters for lake surface temperature assessment. Limnologica, 2022, 94, 125967.	0.7	3
3	How does the calibration method impact the performance of the air2water model for the forecasting of lake surface water temperatures?. Journal of Hydrology, 2021, 597, 126219.	2.3	17
4	Input dropout in product unit neural networks for stream water temperature modelling. Journal of Hydrology, 2021, 598, 126253.	2.3	4
5	Influence of the choice of stream temperature model on the projections of water temperature in rivers. Journal of Hydrology, 2021, 601, 126629.	2.3	18
6	Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling. Earth-Science Reviews, 2020, 201, 103076.	4.0	47
7	River/stream water temperature forecasting using artificial intelligence models: a systematic review. Acta Geophysica, 2020, 68, 1433-1442.	1.0	35
8	Population size in Particle Swarm Optimization. Swarm and Evolutionary Computation, 2020, 58, 100718.	4.5	174
9	Joint Optimization of Conceptual Rainfall-Runoff Model Parameters and Weights Attributed to Meteorological Stations. Water Resources Management, 2019, 33, 4509-4524.	1.9	3
10	Simple modifications of the nonlinear regression stream temperature model for daily data. Journal of Hydrology, 2019, 572, 308-328.	2.3	27
11	Relationship Between Calibration Time and Final Performance of Conceptual Rainfall-Runoff Models. Water Resources Management, 2019, 33, 19-37.	1.9	7
12	Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method. Journal of Hydrology, 2018, 561, 395-412.	2.3	24
13	Across Neighborhood Search algorithm: A comprehensive analysis. Information Sciences, 2018, 435, 334-381.	4.0	3
14	Step-by-step improvement of JADE and SHADE-based algorithms: Success or failure?. Swarm and Evolutionary Computation, 2018, 43, 88-108.	4.5	63
15	Some metaheuristics should be simplified. Information Sciences, 2018, 427, 32-62.	4.0	53
16	L-SHADE optimization algorithms with population-wide inertia. Information Sciences, 2018, 468, 117-141.	4.0	52
17	Review of Differential Evolution population size. Swarm and Evolutionary Computation, 2017, 32, 1-24.	4.5	181
18	Swarm Intelligence and Evolutionary Algorithms: Performance versus speed. Information Sciences, 2017, 384, 34-85.	4.0	76

2

ADAM P PIOTROWSKI

#	Article	IF	CITATIONS
19	Are modern metaheuristics successful in calibrating simple conceptual rainfall–runoff models?. Hydrological Sciences Journal, 2017, 62, 606-625.	1.2	21
20	May the same numerical optimizer be used when searching either for the best or for the worst solution to a real-world problem?. Information Sciences, 2016, 373, 124-148.	4.0	2
21	Searching for structural bias in particle swarm optimization and differential evolution algorithms. Swarm Intelligence, 2016, 10, 307-353.	1.3	15
22	Are Evolutionary Algorithms Effective in Calibrating Different Artificial Neural Network Types for Streamwater Temperature Prediction?. Water Resources Management, 2016, 30, 1217-1237.	1.9	4
23	Comparing various artificial neural network types for water temperature prediction in rivers. Journal of Hydrology, 2015, 529, 302-315.	2.3	97
24	Regarding the rankings of optimization heuristics based on artificially-constructed benchmark functions. Information Sciences, 2015, 297, 191-201.	4.0	35
25	How novel is the "novel―black hole optimization approach?. Information Sciences, 2014, 267, 191-200.	4.0	60
26	Comparing large number of metaheuristics for artificial neural networks training to predict water temperature in a natural river. Computers and Geosciences, 2014, 64, 136-151.	2.0	37
27	Differential Evolution algorithms applied to Neural Network training suffer from stagnation. Applied Soft Computing Journal, 2014, 21, 382-406.	4.1	81
28	Adaptive Memetic Differential Evolution with Global and Local neighborhood-based mutation operators. Information Sciences, 2013, 241, 164-194.	4.0	95
29	A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling. Journal of Hydrology, 2013, 476, 97-111.	2.3	185
30	Product-Units neural networks for catchment runoff forecasting. Advances in Water Resources, 2012, 49, 97-113.	1.7	24
31	Differential Evolution algorithm with Separated Groups for multi-dimensional optimization problems. European Journal of Operational Research, 2012, 216, 33-46.	3.5	52
32	Comparison of evolutionary computation techniques for noise injected neural network training to estimate longitudinal dispersion coefficients in rivers. Expert Systems With Applications, 2012, 39, 1354-1361.	4.4	34
33	Optimizing neural networks for river flow forecasting – Evolutionary Computation methods versus the Levenberg–Marquardt approach. Journal of Hydrology, 2011, 407, 12-27.	2.3	98
34	Evaluation of temporal concentration profiles for ungauged rivers following pollution incidents. Hydrological Sciences Journal, 2011, 56, 883-894.	1.2	5
35	On the importance of training methods and ensemble aggregation for runoff prediction by means of artificial neural networks. Hydrological Sciences Journal, 0, , 1-23.	1.2	2