List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology, 2009, 27, 946-950.	9.4	1,560
2	Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature, 2009, 461, 997-1001.	13.7	902
3	Genetic circuit design automation. Science, 2016, 352, aac7341.	6.0	835
4	Robust multicellular computing using genetically encoded NOR gates and chemical â€~wires'. Nature, 2011, 469, 212-215.	13.7	781
5	Principles of genetic circuit design. Nature Methods, 2014, 11, 508-520.	9.0	755
6	Genetic programs constructed from layered logic gates in single cells. Nature, 2012, 491, 249-253.	13.7	660
7	Engineering Escherichia coli to see light. Nature, 2005, 438, 441-442.	13.7	565
8	Environmentally Controlled Invasion of Cancer Cells by Engineered Bacteria. Journal of Molecular Biology, 2006, 355, 619-627.	2.0	547
9	Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes. Applied and Environmental Microbiology, 2016, 82, 3698-3710.	1.4	443
10	A Synthetic Genetic Edge Detection Program. Cell, 2009, 137, 1272-1281.	13.5	442
11	Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nature Methods, 2013, 10, 659-664.	9.0	409
12	Synthetic biology to access and expand nature's chemical diversity. Nature Reviews Microbiology, 2016, 14, 135-149.	13.6	393
13	Refactoring the nitrogen fixation gene cluster from <i>Klebsiella oxytoca</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7085-7090.	3.3	352
14	Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nature Biotechnology, 2012, 30, 1137-1142.	9.4	342
15	Escherichia coli "Marionette―strains with 12 highly optimized small-molecule sensors. Nature Chemical Biology, 2019, 15, 196-204.	3.9	337
16	Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19949-19954.	3.3	333
17	Genomic mining of prokaryotic repressors for orthogonal logic gates. Nature Chemical Biology, 2014, 10, 99-105.	3.9	321
18	Functional optimization of gene clusters by combinatorial design and assembly. Nature Biotechnology, 2014, 32, 1241-1249.	9.4	307

#	Article	IF	CITATIONS
19	Environmental signal integration by a modular AND gate. Molecular Systems Biology, 2007, 3, 133.	3.2	306
20	Programming a Human Commensal Bacterium, Bacteroides thetaiotaomicron, to Sense and Respond to Stimuli in the Murine Gut Microbiota. Cell Systems, 2015, 1, 62-71.	2.9	267
21	Multichromatic Control of Gene Expression in Escherichia coli. Journal of Molecular Biology, 2011, 405, 315-324.	2.0	225
22	Synthesis of Methyl Halides from Biomass Using Engineered Microbes. Journal of the American Chemical Society, 2009, 131, 6508-6515.	6.6	219
23	Genetic parts to program bacteria. Current Opinion in Biotechnology, 2006, 17, 548-557.	3.3	217
24	Multiâ€input <scp>CRISPR</scp> / <scp>C</scp> as genetic circuits that interface host regulatory networks. Molecular Systems Biology, 2014, 10, 763.	3.2	213
25	Permanent genetic memory with >1-byte capacity. Nature Methods, 2014, 11, 1261-1266.	9.0	202
26	Realizing the potential of synthetic biology. Nature Reviews Molecular Cell Biology, 2014, 15, 289-294.	16.1	196
27	Modular control of multiple pathways using engineered orthogonal T7 polymerases. Nucleic Acids Research, 2012, 40, 8773-8781.	6.5	173
28	Discovery of Reactive Microbiota-Derived Metabolites that Inhibit Host Proteases. Cell, 2017, 168, 517-526.e18.	13.5	173
29	A â€~resource allocator' for transcription based on a highly fragmented T7 <scp>RNA</scp> polymerase. Molecular Systems Biology, 2014, 10, 742.	3.2	156
30	Design of orthogonal genetic switches based on a crosstalk map of σs, antiâ€ij̃ƒs, and promoters. Molecular Systems Biology, 2013, 9, 702.	3.2	155
31	Engineering RGB color vision into Escherichia coli. Nature Chemical Biology, 2017, 13, 706-708.	3.9	148
32	Engineered promoters enable constant gene expression at any copy number in bacteria. Nature Biotechnology, 2018, 36, 352-358.	9.4	144
33	Engineered integrative and conjugative elements for efficient and inducible DNA transfer to undomesticated bacteria. Nature Microbiology, 2018, 3, 1043-1053.	5.9	137
34	Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nature Communications, 2020, 11, 6379.	5.8	137
35	Control of nitrogen fixation in bacteria that associate with cereals. Nature Microbiology, 2020, 5, 314-330.	5.9	135
36	Resilient living materials built by printing bacterial spores. Nature Chemical Biology, 2020, 16, 126-133.	3.9	133

#	Article	IF	CITATIONS
37	Engineering the <i>Salmonella</i> type III secretion system to export spider silk monomers. Molecular Systems Biology, 2009, 5, 309.	3.2	130
38	Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nature Communications, 2015, 6, 6989.	5.8	128
39	Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression. Current Opinion in Chemical Biology, 2013, 17, 878-892.	2.8	125
40	A Pressure Test to Make 10 Molecules in 90 Days: External Evaluation of Methods to Engineer Biology. Journal of the American Chemical Society, 2018, 140, 4302-4316.	6.6	118
41	Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design. Nucleic Acids Research, 2018, 46, 11115-11125.	6.5	108
42	Use of plant colonizing bacteria as chassis for transfer of N2-fixation to cereals. Current Opinion in Biotechnology, 2015, 32, 216-222.	3.3	99
43	Genetic Circuit Performance under Conditions Relevant for Industrial Bioreactors. ACS Synthetic Biology, 2012, 1, 555-564.	1.9	98
44	Antisense transcription as a tool to tune geneÂexpression. Molecular Systems Biology, 2016, 12, 854.	3.2	96
45	Cellular checkpoint control using programmable sequential logic. Science, 2018, 361, .	6.0	91
46	Dynamic control of endogenous metabolism with combinatorial logic circuits. Molecular Systems Biology, 2018, 14, e8605.	3.2	90
47	Genetic circuit design automation for yeast. Nature Microbiology, 2020, 5, 1349-1360.	5.9	89
48	Kinetic Buffering of Cross Talk between Bacterial Two-Component Sensors. Journal of Molecular Biology, 2009, 390, 380-393.	2.0	85
49	Retrosynthetic design of metabolic pathways to chemicals not found in nature. Current Opinion in Systems Biology, 2019, 14, 82-107.	1.3	84
50	Genetic circuit characterization and debugging using <scp>RNA</scp> â€seq. Molecular Systems Biology, 2017, 13, 952.	3.2	80
51	Genetic circuit design automation for the gut resident species Bacteroides thetaiotaomicron. Nature Biotechnology, 2020, 38, 962-969.	9.4	79
52	Lightâ€Controlled, Highâ€Resolution Patterning of Living Engineered Bacteria Onto Textiles, Ceramics, and Plastic. Advanced Functional Materials, 2019, 29, 1901788.	7.8	78
53	Programming cells: towards an automated â€~Genetic Compiler'. Current Opinion in Biotechnology, 2010, 21, 572-581	3.3	73
54	Systematic Transfer of Prokaryotic Sensors and Circuits to Mammalian Cells. ACS Synthetic Biology, 2014, 3, 880-891.	1.9	72

#	Article	IF	CITATIONS
55	Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein Journal of Organic Chemistry, 2019, 15, 2889-2906.	1.3	70
56	Post-translational control of genetic circuits using <i>Potyvirus</i> proteases. Nucleic Acids Research, 2016, 44, 6493-6502.	6.5	68
57	Formation of Nitrogenase NifDK Tetramers in the Mitochondria of <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2017, 6, 1043-1055.	1.9	66
58	Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. Nature Communications, 2016, 7, 11179.	5.8	65
59	Prokaryotic gene clusters: A rich toolbox for synthetic biology. Biotechnology Journal, 2010, 5, 1277-1296.	1.8	61
60	The Bacillus subtilis sin Operon. Genetics, 2005, 169, 1187-1202.	1.2	59
61	Construction of a Genetic Multiplexer to Toggle between Chemosensory Pathways in Escherichia coli. Journal of Molecular Biology, 2011, 406, 215-227.	2.0	59
62	Engineering orthogonal signalling pathways reveals the sparse occupancy of sequence space. Nature, 2019, 574, 702-706.	13.7	57
63	An absorbance method for analysis of enzymatic degradation kinetics of poly(ethylene terephthalate) films. Scientific Reports, 2021, 11, 928.	1.6	57
64	Balancing gene expression without library construction via a reusable sRNA pool. Nucleic Acids Research, 2017, 45, 8116-8127.	6.5	56
65	Deep learning to predict the lab-of-origin of engineered DNA. Nature Communications, 2018, 9, 3135.	5.8	55
66	Programming <i>Escherichia coli</i> to function as a digital display. Molecular Systems Biology, 2020, 16, e9401.	3.2	54
67	Genetic circuit design automation with Cello 2.0. Nature Protocols, 2022, 17, 1097-1113.	5.5	52
68	Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor. Nucleic Acids Research, 2015, 43, gkv1071.	6.5	50
69	DNAplotlib: Programmable Visualization of Genetic Designs and Associated Data. ACS Synthetic Biology, 2017, 6, 1115-1119.	1.9	50
70	Single-cell measurement of plasmid copy number and promoter activity. Nature Communications, 2021, 12, 1475.	5.8	50
71	Induction and Relaxation Dynamics of the Regulatory Network Controlling the Type III Secretion System Encoded within Salmonella Pathogenicity Island 1. Journal of Molecular Biology, 2008, 377, 47-61.	2.0	49
72	Iterative algorithm-guided design of massive strain libraries, applied to itaconic acid production in yeast. Metabolic Engineering, 2018, 48, 33-43.	3.6	49

#	Article	IF	CITATIONS
73	Engineering Bacterial Signals and Sensors. Contributions To Microbiology, 2009, 16, 194-225.	2.1	47
74	Control of type III protein secretion using a minimal genetic system. Nature Communications, 2017, 8, 14737.	5.8	47
75	Hybrid Living Materials: Digital Design and Fabrication of 3D Multimaterial Structures with Programmable Biohybrid Surfaces. Advanced Functional Materials, 2020, 30, 1907401.	7.8	47
76	Engineering living and regenerative fungal–bacterial biocomposite structures. Nature Materials, 2022, 21, 471-478.	13.3	47
77	<scp>P</scp> recision design of stable genetic circuits carried in highlyâ€insulated <i>E.Âcoli</i> genomic landing pads. Molecular Systems Biology, 2020, 16, e9584.	3.2	45
78	Characterization of combinatorial patterns generated by multiple twoâ€component sensors in <i>E. coli</i> that respond to many stimuli. Biotechnology and Bioengineering, 2011, 108, 666-675.	1.7	42
79	Memory and Combinatorial Logic Based on DNA Inversions: Dynamics and Evolutionary Stability. ACS Synthetic Biology, 2015, 4, 1361-1372.	1.9	42
80	DNA Assembly in 3D Printed Fluidics. PLoS ONE, 2015, 10, e0143636.	1.1	40
81	Genetic circuit characterization by inferring RNA polymerase movement and ribosome usage. Nature Communications, 2020, 11, 5001.	5.8	40
82	Registry in a tube: multiplexed pools of retrievable parts for genetic design space exploration. Nucleic Acids Research, 2017, 45, gkw1226.	6.5	37
83	Biosynthesis of the nitrogenase active-site cofactor precursor NifB-co in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25078-25086.	3.3	36
84	Double Dutch: A Tool for Designing Combinatorial Libraries of Biological Systems. ACS Synthetic Biology, 2016, 5, 507-517.	1.9	34
85	Gut-inhabiting Clostridia build human GPCR ligands by conjugating neurotransmitters with diet- and human-derived fatty acids. Nature Microbiology, 2021, 6, 792-805.	5.9	33
86	Engineered plant control of associative nitrogen fixation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117465119.	3.3	32
87	Communicating Structure and Function in Synthetic Biology Diagrams. ACS Synthetic Biology, 2019, 8, 1818-1825.	1.9	30
88	Genetic Sensor for Strong Methylating Compounds. ACS Synthetic Biology, 2013, 2, 614-624.	1.9	29
89	Coculture of primary human colon monolayer with human gut bacteria. Nature Protocols, 2021, 16, 3874-3900.	5.5	28
90	Silica Nanostructures Produced Using Diatom Peptides with Designed Postâ€Translational Modifications. Advanced Functional Materials, 2020, 30, 2000849.	7.8	23

#	Article	IF	CITATIONS
91	A Framework for Genetic Logic Synthesis. Proceedings of the IEEE, 2015, 103, 2196-2207.	16.4	22
92	Synthetic Biology Open Language Visual (SBOL Visual) Version 2.0. Journal of Integrative Bioinformatics, 2018, 15, .	1.0	21
93	Genetic Circuit Dynamics: Hazard and Glitch Analysis. ACS Synthetic Biology, 2020, 9, 2324-2338.	1.9	21
94	Quantification of the physiochemical constraints on the export of spider silk proteins by Salmonella type III secretion. Microbial Cell Factories, 2010, 9, 78.	1.9	19
95	Organism Engineering for the Bioproduction of the Triaminotrinitrobenzene (TATB) Precursor Phloroglucinol (PG). ACS Synthetic Biology, 2019, 8, 2746-2755.	1.9	19
96	Genetic Encoding of Targeted Magnetic Resonance Imaging Contrast Agents for Tumor Imaging. ACS Synthetic Biology, 2020, 9, 392-401.	1.9	19
97	Genetic Tuning of Iron Oxide Nanoparticle Size, Shape, and Surface Properties in <i>Magnetospirillum magneticum</i> . Advanced Functional Materials, 2021, 31, 2004813.	7.8	19
98	Distributed Implementation of Boolean Functions by Transcriptional Synthetic Circuits. ACS Synthetic Biology, 2020, 9, 2172-2187.	1.9	18
99	Selection for constrained peptides that bind to a single target protein. Nature Communications, 2021, 12, 6343.	5.8	16
100	Genetic Design <i>via</i> Combinatorial Constraint Specification. ACS Synthetic Biology, 2017, 6, 2130-2135.	1.9	15
101	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
102	Genetically modifying skin microbe to produce violacein and augmenting microbiome did not defend Panamanian golden frogs from disease. ISME Communications, 2021, 1, .	1.7	13
103	Competitive dCas9 binding as a mechanism for transcriptional control. Molecular Systems Biology, 2021, 17, e10512.	3.2	13
104	Nanoliter scale electrochemistry of natural and engineered electroactive bacteria. Bioelectrochemistry, 2021, 137, 107644.	2.4	12
105	Activation of Protein Expression in Electroactive Biofilms. ACS Synthetic Biology, 2020, 9, 1958-1967.	1.9	11
106	Synthetic Biology Open Language Visual (SBOL Visual) Version 2.1. Journal of Integrative Bioinformatics, 2019, 16, .	1.0	8
107	Engineering a DNAzyme-Based Operon System for the Production of DNA Nanoscaffolds in Living Bacteria. ACS Synthetic Biology, 2020, 9, 236-240.	1.9	8
108	Rapid and simultaneous screening of pathway designs and chassis organisms, applied to engineered living materials. Metabolic Engineering, 2021, 66, 308-318.	3.6	7

#	Article	IF	CITATIONS
109	Characterizing chemical signaling between engineered "microbial sentinels―in porous microplates. Molecular Systems Biology, 2022, 18, e10785.	3.2	7
110	A synthetic distributed genetic multi-bit counter. IScience, 2021, 24, 103526.	1.9	6
111	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
112	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
113	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
114	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
115	Genetic Control of Aerogel and Nanofoam Properties, Applied to Ni–MnO <i>_x</i> Cathode Design. Advanced Functional Materials, 2021, 31, 2010867.	7.8	3
116	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
117	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
118	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
119	Four-Step Pathway from Phenylpyruvate to Benzylamine, an Intermediate to the High-Energy Propellant CL-20. ACS Synthetic Biology, 2021, 10, 2187-2196.	1.9	2
120	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
121	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
122	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
123	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
124	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
125	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
126	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1

#	Article	IF	CITATIONS
127	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
128	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
129	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
130	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
131	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
132	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
133	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
134	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
135	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	Ο
136	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
137	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
138	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
139	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	Ο
140	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
141	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	Ο
142	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0
143	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
144	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0

#	Article	IF	CITATIONS
145	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	0
146	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
147	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	0
148	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
149	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
150	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
151	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
152	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
153	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
154	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
155	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
156	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
157	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
158	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
159	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0
160	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
161	Update to Our Reader, Reviewer, and Author Communitiesâ \in "April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0
162	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0

#	Article	IF	CITATIONS
163	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	Ο
164	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	0
165	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
166	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
167	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	о
168	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
169	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
170	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
171	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
172	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	0
173	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
174	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
175	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
176	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
177	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
178	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
179	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	Ο
180	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0

11

#	Article	IF	CITATIONS
181	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	Ο
182	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
183	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
184	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
185	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
186	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
187	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	Ο
188	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
189	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	Ο
190	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
191	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
192	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
193	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	Ο
194	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
195	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	Ο
196	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0
197	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
198	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0

#	Article	IF	CITATIONS
199	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0
200	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
201	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
202	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
203	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
204	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
205	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
206	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
207	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
208	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
209	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
210	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
211	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
212	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
213	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
214	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
215	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
216	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0

#	Article	IF	CITATIONS
217	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	0
218	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0
219	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	Ο
220	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	0
221	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	Ο
222	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
223	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	Ο
224	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	0
225	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	Ο
226	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	0
227	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	Ο
228	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
229	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	Ο
230	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
231	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	Ο
232	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
233	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
234	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	0

#	Article	IF	CITATIONS
235	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0