Oznur Karaagac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improvement of the saturation magnetization of PEG coated superparamagnetic iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2022, 551, 169140.	2.3	23
2	Improvement of the saturation magnetisation using Plackett–Burman design and response surface methodology: superparamagnetic iron oxide nanoparticles synthesised by co-precipitation under nitrogen atmosphere. Journal of Materials Science: Materials in Electronics, 2021, 32, 13673-13684.	2.2	1
3	The effects of temperature and reaction time on the formation of manganese ferrite nanoparticles synthesized by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2020, 31, 2567-2574.	2.2	16
4	Easy Controlled Properties of Quaternary FeNiCrCd Thin Films Deposited from a Single dc Magnetron Sputtering Under the Influence of Deposition Rate. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3535-3540.	1.8	6
5	A simple way to synthesize tartaric acid, ascorbic acid and their mixture coated superparamagnetic iron oxide nanoparticles with high saturation magnetisation and high stability against oxidation: Characterizations and their biocompatibility studies. Journal of Magnetism and Magnetic Materials, 2019. 474. 654-660.	2.3	15
6	Superparamagnetic zinc ferrite: A correlation between high magnetizations and nanoparticle sizes as a function of reaction time via hydrothermal process. Journal of Magnetism and Magnetic Materials, 2019, 474, 282-286.	2.3	40
7	Effects of biocompatible surfactants on structural and corresponding magnetic properties of iron oxide nanoparticles coated by hydrothermal process. Journal of Magnetism and Magnetic Materials, 2019, 474, 332-336.	2.3	18
8	The influence of synthesis parameters on one-step synthesized superparamagnetic cobalt ferrite nanoparticles with high saturation magnetization. Journal of Magnetism and Magnetic Materials, 2019, 473, 262-267.	2.3	69
9	Optimisation of saturation magnetisation of iron nanoparticles synthesized by hydrogen reduction: Taguchi technique, response surface method, and multiple linear and quadratic regression analyses. Journal of Magnetism and Magnetic Materials, 2019, 473, 190-197.	2.3	9
10	The Role of Wheel Surface Quality on Structural and Hard Magnetic Properties of Nd–Fe–B Permanent Magnet Powders. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3025-3041.	1.8	6
11	Novel debittering process of green table olives: application of <i>β</i> -glucosidase bound onto superparamagnetic nanoparticles. CYTA - Journal of Food, 2018, 16, 840-847.	1.9	4
12	2D Magnetic Texture Analysis of Co–Cu Films. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2017, 72, 449-455.	1.5	1
13	A Facile Method to Synthesize Nickel Ferrite Nanoparticles: Parameter Effect. Journal of Superconductivity and Novel Magnetism, 2017, 30, 2359-2369.	1.8	13
14	A simple way to obtain high saturation magnetization for superparamagnetic iron oxide nanoparticles synthesized in air atmosphere: Optimization by experimental design. Journal of Magnetism and Magnetic Materials, 2016, 409, 116-123.	2.3	40
15	Electrodeposited CoFeCu films at high and low pH levels: structural and magnetic properties. Journal of Materials Science: Materials in Electronics, 2015, 26, 2090-2094.	2.2	3
16	Superparamagnetic Cobalt Ferrite Nanoparticles: Effect of Temperature and Base Concentration. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1021-1027.	1.8	33
17	Growth of Iron Oxide Nanoparticles by Hydrothermal Process: Effect of Reaction Parameters on the Nanoparticle Size. Journal of Superconductivity and Novel Magnetism, 2015, 28, 823-829.	1.8	84
18	Growth of binary Ni–Fe films: Characterisations at low and high potential levels. Journal of Magnetism and Magnetic Materials, 2015, 377, 59-64.	2.3	25

Oznur Karaagac

#	Article	IF	CITATIONS
19	Electrodeposited NiCoFe films from electrolytes with different Fe ion concentrations. Journal of Magnetism and Magnetic Materials, 2014, 360, 148-151.	2.3	15
20	Characterisations of CoFeCu films: Influence of Fe concentration. Journal of Alloys and Compounds, 2014, 586, S326-S330.	5.5	21
21	Characterizations of Iron Particles Reduced from Iron Oxide Nanoparticles Under Hydrogen Atmosphere. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1707-1711.	1.8	6
22	Properties of Electrodeposited CoFeNi/Cu Superlattices: The Effect of CoFeNi and Cu Layers Thicknesses. Journal of Superconductivity and Novel Magnetism, 2013, 26, 813-817.	1.8	6
23	Influence of deposition potential on the electrodeposited Ternary CoFeCu films. Journal of Materials Science: Materials in Electronics, 2013, 24, 2562-2567.	2.2	5
24	Reduction and characterizations of iron particles: influence of reduction parameters. Journal of Materials Science: Materials in Electronics, 2013, 24, 2602-2609.	2.2	2
25	Superparamagnetic iron oxide nanoparticles: effect of iron oleate precursors obtained with a simple way. Journal of Materials Science: Materials in Electronics, 2013, 24, 3073-3080.	2.2	27
26	Effect of Synthesis Parameters on the Properties of Superparamagnetic Iron Oxide Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2777-2781.	1.8	31
27	Magnetic Characterizations of Cobalt Oxide Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2783-2787.	1.8	31
28	Electrodeposited Ni–Co films from electrolytes with different Co contents. Applied Surface Science, 2012, 258, 4005-4010.	6.1	62
29	Influence of Co:Cu ratio on properties of Co–Cu films deposited at different conditions. Journal of Magnetism and Magnetic Materials, 2012, 324, 3834-3838.	2.3	12
30	Iron Oxide Nanoparticles Co-Precipitated in Air Environment: Effect of [Fe\$^{+2}\$]/[Fe\$^{+3}\$] Ratio. IEEE Transactions on Magnetics, 2012, 48, 1532-1536.	2.1	29
31	Properties of Iron Oxide Nanoparticles Synthesized atÂDifferentÂTemperatures. Journal of Superconductivity and Novel Magnetism, 2011, 24, 675-678.	1.8	10
32	Electrodeposited Cobalt Films: Alteration Caused by the Electrolyte pH. Journal of Superconductivity and Novel Magnetism, 2011, 24, 801-804.	1.8	12
33	The Effect of Fe Content in Electrodeposited CoFe/Cu Multilayers on Structural, Magnetic and Magnetoresistance Characterizations. Journal of Nanoscience and Nanotechnology, 2010, 10, 7783-7786.	0.9	23
34	Properties of Co–Fe Films: Dependence of Cathode Potentials. IEEE Transactions on Magnetics, 2010, 46, 390-392.	2.1	21
35	Composition Dependence of Structural and Magnetic Properties of Electrodeposited Co-Cu Films. IEEE Transactions on Magnetics, 2010, 46, 3973-3977.	2.1	10
36	A Simple Way to Synthesize Superparamagnetic Iron Oxide Nanoparticles in Air Atmosphere: Iron Ion Concentration Effect. IEEE Transactions on Magnetics, 2010, 46, 3978-3983.	2.1	72

Oznur Karaagac

#	Article	IF	CITATIONS
37	Role of electrolyte pH on structural and magnetic properties of Co–Fe films. Journal of Magnetism and Magnetic Materials, 2010, 322, 1095-1097.	2.3	33
38	Characterisations of CoCu films electrodeposited at different cathode potentials. Journal of Magnetism and Magnetic Materials, 2010, 322, 1098-1101.	2.3	27
39	Contribution of electrolyte pH and deposition potentials to the magnetic anisotropy of electrodeposited nickel films. Journal of Magnetism and Magnetic Materials, 2010, 322, 1088-1091.	2.3	3
40	Influence of Deposition Parameters of Novel Vacuum Coating Plant on Evaporated Ni ₆₀ Fe ₄₀ and Ni ₈₀ Fe ₂₀ Films. Sensor Letters, 2009, 7, 220-223.	0.4	8