
Adrian H Chester

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/957939/publications.pdf Version: 2024-02-01

ADDIAN H CHESTED

#	Article	IF	CITATIONS
1	Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nature Materials, 2013, 12, 576-583.	27.5	228
2	Role of Human Valve Interstitial Cells in Valve Calcification and Their Response to Atorvastatin. Circulation, 2006, 114, I547-52.	1.6	181
3	Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovascular Research, 2006, 71, 548-556.	3.8	153
4	Side-Specific Endothelial-Dependent Regulation of Aortic Valve Calcification. American Journal of Pathology, 2013, 182, 1922-1931.	3.8	137
5	Endothelium-Dependent Regulation of the Mechanical Properties of Aortic Valve Cusps. Journal of the American College of Cardiology, 2009, 53, 1448-1455.	2.8	122
6	Molecular and functional characteristics of heart-valve interstitial cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1437-1443.	4.0	111
7	Expression of smooth muscle cell markers and co-activators in calcified aortic valves. European Heart Journal, 2015, 36, 1335-1345.	2.2	84
8	Modulation of Human Valve Interstitial Cell Phenotype and Function Using a Fibroblast Growth Factor 2 Formulation. PLoS ONE, 2015, 10, e0127844.	2.5	64
9	Raman spectroscopy imaging reveals interplay between atherosclerosis and medial calcification in the human aorta. Science Advances, 2017, 3, e1701156.	10.3	60
10	Induction of nitric oxide synthase in human vascular smooth muscle: interactions between proinflammatory cytokines. Cardiovascular Research, 1998, 38, 814-821.	3.8	53
11	Characterization of Porcine Aortic Valvular Interstitial Cell â€~Calcified' Nodules. PLoS ONE, 2012, 7, e48154.	2.5	47
12	EXPLANTED VEIN GRAFTS WITH AN INTACT ENDOTHELIUM DEMONSTRATE REDUCED FOCAL EXPRESSION OF ENDOTHELIAL NITRIC OXIDE SYNTHASE SPECIFIC TO ATHEROSCLEROTIC SITES. , 1996, 179, 197-203.		33
13	Chemical and biological assessment of metal organic frameworks (MOFs) in pulmonary cells and in an acute in vivo model: relevance to pulmonary arterial hypertension therapy. Pulmonary Circulation, 2017, 7, 643-653.	1.7	33
14	Alternative pathways of angiotensin II production in the human saphenous vein. British Journal of Pharmacology, 1998, 125, 423-428.	5.4	27
15	Elevated cyclic stretch and serotonin result in altered aortic valve remodeling via a mechanosensitive 5-HT2A receptor-dependent pathway. Cardiovascular Pathology, 2012, 21, 206-213.	1.6	26
16	Valve Endothelial Cells - Not Just Any Old Endothelial Cells. Current Vascular Pharmacology, 2016, 14, 146-154.	1.7	26
17	Localisation and function of nerves in the aortic root. Journal of Molecular and Cellular Cardiology, 2008, 44, 1045-1052.	1.9	21
18	Hypoxia-mediated regulation of the secretory properties of mitral valve interstitial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H14-H23.	3.2	20

Adrian H Chester

#	Article	IF	CITATIONS
19	Cellular Mechanisms in Mitral Valve Disease. Journal of Cardiovascular Translational Research, 2011, 4, 702-709.	2.4	19
20	Side-specific mechanical properties of valve endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H15-H24.	3.2	19
21	Effect of Side-Specific Valvular Shear Stress on the Content of Extracellular Matrix in Aortic Valves. Cardiovascular Engineering and Technology, 2018, 9, 151-157.	1.6	18
22	Expression, localisation and function of ACE and chymase in normal and atherosclerotic human coronary arteries. Vascular Pharmacology, 2005, 42, 99-108.	2.1	17
23	INHIBITION OF HUMAN CARDIAC FIBROBLAST MITOGENESIS BY BLOCKADE OF MITOGEN-ACTIVATED PROTEIN KINASE AND PHOSPHATIDYLINOSITOL 3-KINASE. Clinical and Experimental Pharmacology and Physiology, 1999, 26, 511-513.	1.9	16
24	Cardiac regeneration following cryoinjury in the adult zebrafish targets a maturation-specific biomechanical remodeling program. Scientific Reports, 2018, 8, 15661.	3.3	16
25	A redox-based mechanism for nitric oxide-induced inhibition of DNA synthesis in human vascular smooth muscle cells. British Journal of Pharmacology, 2000, 129, 1513-1521.	5.4	13
26	Aortic calcified particles modulate valvular endothelial and interstitial cells. Cardiovascular Pathology, 2017, 28, 36-45.	1.6	13
27	Expression and function of mechanosensitive ion channels in human valve interstitial cells. PLoS ONE, 2020, 15, e0240532.	2.5	13
28	Endothelin-1 and the Aortic Valve. Current Vascular Pharmacology, 2005, 3, 353-357.	1.7	11
29	Cardiovascular calcification violet pearl. Lancet, The, 2014, 384, 1294.	13.7	9
30	Differential regulation of DNA synthesis by nitric oxide and hydroxyurea in vascular smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1799-H1807.	3.2	7
31	CD39 and CD73 in the aortic valve—biochemical and immunohistochemical analysis in valve cell populations and its changes in valve mineralization. Cardiovascular Pathology, 2018, 36, 53-63.	1.6	7
32	Oxidized low-density lipoproteins enhance expression and activity of CD39 and CD73 in the human aortic valve endothelium. Nucleosides, Nucleotides and Nucleic Acids, 2016, 35, 713-719.	1.1	6
33	Interferons Are Pro-Inflammatory Cytokines in Sheared-Stressed Human Aortic Valve Endothelial Cells. International Journal of Molecular Sciences, 2021, 22, 10605.	4.1	5
34	Correlation between vascular responsivensss and expression of novel transcripts of the ETA-receptor in human vascular tissue. Vascular Pharmacology, 2007, 46, 181-187.	2.1	4
35	Tissue Engineering—Bridging the Gap. Journal of Cardiovascular Translational Research, 2017, 10, 91-92.	2.4	1
36	Coronary vasodilation mediated by T cells expressing choline acetyltransferase. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H933-H939.	3.2	1

#	Article	IF	CITATIONS
37	Effect of the Contractile Properties of the Aortic Root on Valve Competence In Vitro. Journal of Cardiac Surgery, 2002, 17, 561-561.	0.7	0
38	Metal Organic Framework as a Potential Drug Carrier for Pulmonary Arterial Hypertension. , 2016, , .		0
39	Atypical Expression of Smooth Muscle Markers and Co-activators and Their Regulation in Rheumatic Aortic and Calcified Bicuspid Valves. Frontiers in Cardiovascular Medicine, 2022, 9, 793666.	2.4	0