
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Commemorating Two Centuries of Iodine Research: An Interdisciplinary Overview of Current Research. Angewandte Chemie - International Edition, 2011, 50, 11598-11620.	7.2	299
2	Mechanism of H ₂ O ₂ Decomposition on Transition Metal Oxide Surfaces. Journal of Physical Chemistry C, 2012, 116, 9533-9543.	1.5	223
3	Redox and Acidity Properties of 4-Substituted Aniline Radical Cations in Water. Journal of the American Chemical Society, 1994, 116, 1423-1427.	6.6	177
4	A Computational Analysis of Substituent Effects on the Oâ´'H Bond Dissociation Energy in Phenols:Â Polar Versus Radical Effects. Journal of the American Chemical Society, 1997, 119, 4239-4244.	6.6	170
5	Porosity investigation of compacted bentonite using XRD profile modeling. Journal of Contaminant Hydrology, 2012, 128, 19-32.	1.6	151
6	The Antioxidant Profile of 2,3-Dihydrobenzo[b]furan-5-ol and Its 1-Thio, 1-Seleno, and 1-Telluro Analogues. Journal of the American Chemical Society, 2001, 123, 3434-3440.	6.6	135
7	The relative impact of radiolysis products in radiation induced oxidative dissolution of UO2. Journal of Nuclear Materials, 2006, 355, 38-46.	1.3	123
8	Formation of H ₂ O ₂ in TiO ₂ Photocatalysis of Oxygenated and Deoxygenated Aqueous Systems: A Probe for Photocatalytically Produced Hydroxyl Radicals. Journal of Physical Chemistry C, 2014, 118, 10083-10087.	1.5	117
9	Free radical combination reactions involving phenoxyl radicals. The Journal of Physical Chemistry, 1993, 97, 8229-8233.	2.9	114
10	Kinetics, Mechanism, and Activation Energy of H ₂ O ₂ Decomposition on the Surface of ZrO ₂ . Journal of Physical Chemistry C, 2010, 114, 11202-11208.	1.5	114
11	Is Bimolecular Reduction of Hg(II) Complexes Possible in Aqueous Systems of Environmental Importance. Journal of Physical Chemistry A, 2003, 107, 4478-4482.	1.1	104
12	Catalytic decomposition of hydrogen peroxide on transition metal and lanthanide oxides. Journal of Molecular Catalysis A, 2013, 379, 178-184.	4.8	100
13	Oxidation of UO2 by radiolytic oxidants. Journal of Nuclear Materials, 2003, 322, 242-248.	1.3	92
14	Temperature effect on the stability of bentonite colloids in water. Journal of Colloid and Interface Science, 2006, 298, 694-705.	5.0	86
15	Redox and Acidity Properties of Alkyl- and Arylamine Radical Cations and the Corresponding Aminyl Radicals1. The Journal of Physical Chemistry, 1996, 100, 17539-17543.	2.9	84
16	Redox chemistry of substituted benzenes: the one-electron reduction potentials of methoxy-substituted benzene radical cations. The Journal of Physical Chemistry, 1993, 97, 11278-11282.	2.9	83
17	Catalytic Chain-Breaking Pyridinol Antioxidants. Journal of Organic Chemistry, 2010, 75, 716-725.	1.7	82
18	Radiation Induced Spent Nuclear Fuel Dissolution under Deep Repository Conditions. Environmental Science & Technology, 2007, 41, 7087-7093.	4.6	75

#	Article	IF	CITATIONS
19	Thiol-ene coupling reaction of fatty acid monomers. Journal of Polymer Science Part A, 2004, 42, 6346-6352.	2.5	74
20	Reactivity of metal oxide clusters with hydrogen peroxide and water – a DFT study evaluating the performance of different exchange–correlation functionals. Physical Chemistry Chemical Physics, 2013, 15, 5539.	1.3	73
21	Thermochemical Properties of Peroxides and Peroxyl Radicals. The Journal of Physical Chemistry, 1996, 100, 6814-6818.	2.9	72
22	Effects of temperature on the stability of colloidal montmorillonite particles at different pH and ionic strength. Applied Clay Science, 2009, 43, 21-26.	2.6	71
23	Bringing <scp>d</scp> -limonene to the scene of bio-based thermoset coatings via free-radical thiolâ€″ene chemistry: macromonomer synthesis, UV-curing and thermo-mechanical characterization. Polymer Chemistry, 2014, 5, 3245-3260.	1.9	71
24	Coumarin as a Quantitative Probe for Hydroxyl Radical Formation in Heterogeneous Photocatalysis. Journal of Physical Chemistry C, 2019, 123, 6667-6674.	1.5	70
25	Effects of on the kinetics of UO2 oxidation by H2O2. Journal of Nuclear Materials, 2006, 358, 202-208.	1.3	68
26	Quantum Chemical Studies on the Thermochemistry of Alkyl and Peroxyl Radicals. Journal of Physical Chemistry A, 1999, 103, 7094-7104.	1.1	65
27	On the effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel. Journal of Nuclear Materials, 2008, 378, 55-59.	1.3	57
28	H2O2 and radiation induced dissolution of UO2 and SIMFUEL pellets. Journal of Nuclear Materials, 2011, 410, 89-93.	1.3	55
29	Radiation induced dissolution of UO2 based nuclear fuel – A critical review of predictive modelling approaches. Journal of Nuclear Materials, 2012, 420, 409-423.	1.3	54
30	Oxidation Potentials of α-Hydroxyalkyl Radicals in Acetonitrile Obtained by Photomodulated Voltammetry. Journal of the American Chemical Society, 2001, 123, 12590-12595.	6.6	53
31	Reactivity of H2O2 towards different UO2-based materials: The relative impact of radiolysis products revisited. Journal of Nuclear Materials, 2013, 434, 434-439.	1.3	52
32	Solvent Effects on ATRP of Oligo(ethylene glycol) Methacrylate. Exploring the Limits of Control. Macromolecules, 2009, 42, 3302-3308.	2.2	47
33	Cuprous hydroxide in a solid form: does it exist?. Dalton Transactions, 2013, 42, 9585.	1.6	47
34	Radiation-Engineered Functional Nanoparticles in Aqueous Systems. Journal of Nanoscience and Nanotechnology, 2015, 15, 3445-3467.	0.9	47
35	O–H bond strengths and one-electron reduction potentials of multisubstituted phenols and phenoxyl radicals. Predictions using free energy relationships. Journal of the Chemical Society Perkin Transactions II, 1993, , 1567-1568.	0.9	46
36	Understanding Copper-Based Atom-Transfer Radical Polymerization in Aqueous Media. Journal of Physical Chemistry A, 2004, 108, 7129-7131.	1.1	46

#	Article	IF	CITATIONS
37	Thiol–ene coupling of 1,2-disubstituted alkene monomers: The kinetic effect of cis/trans-isomer structures. European Polymer Journal, 2010, 46, 2321-2332.	2.6	46
38	Radiation induced corrosion of copper for spent nuclear fuel storage. Radiation Physics and Chemistry, 2013, 92, 80-86.	1.4	46
39	Kinetic determination of critical coagulation concentrations for sodium- and calcium-montmorillonite colloids in NaCl and CaCl2 aqueous solutions. Journal of Colloid and Interface Science, 2007, 315, 512-519.	5.0	45
40	Thiol–ene coupling kinetics of d-limonene: a versatile â€~non-click' free-radical reaction involving a natural terpene. RSC Advances, 2013, 3, 11021.	1.7	44
41	Catalytic Chain-Breaking Pyridinol Antioxidants. Organic Letters, 2008, 10, 4895-4898.	2.4	43
42	Radiation chemical synthesis and characterization of UO2 nanoparticles. Journal of Nuclear Materials, 2009, 383, 231-236.	1.3	42
43	On the catalytic effects of UO2(s) and Pd(s) on the reaction between H2O2 and H2 in aqueous solution. Journal of Nuclear Materials, 2008, 372, 160-163.	1.3	41
44	H2 inhibition of radiation induced dissolution of spent nuclear fuel. Journal of Nuclear Materials, 2009, 383, 226-230.	1.3	41
45	On the Nature of Solvent Effects on Redox Properties. Journal of Physical Chemistry A, 2004, 108, 4805-4811.	1.1	39
46	Photoinduced thiol–ene crosslinking of globalide/ε aprolactone copolymers: Curing performance and resulting thermoset properties. Journal of Polymer Science Part A, 2012, 50, 16-24.	2.5	39
47	A New Method for Estimation of Homolytic Câ [°] 'H Bond Dissociation Enthalpies. Journal of Chemical Information and Computer Sciences, 2000, 40, 1222-1226.	2.8	38
48	On the redox reactivity of doped UO2 pellets – Influence of dopants on the H2O2 decomposition mechanism. Journal of Nuclear Materials, 2012, 430, 6-11.	1.3	37
49	Redox and Acidity Properties of 2,2â€~- and 4,4â€~-Biphenol and the Corresponding Phenoxyl Radicals. Journal of Physical Chemistry A, 2002, 106, 4758-4762.	1.1	36
50	Geometrical α- and β-dose distributions and production rates of radiolysis products in water in contact with spent nuclear fuel. Journal of Nuclear Materials, 2006, 359, 1-7.	1.3	36
51	Resolving the H2 effect on radiation induced dissolution of UO2-based spent nuclear fuel. Journal of Nuclear Materials, 2010, 396, 163-169.	1.3	36
52	N–H bond dissociation energies, reduction potentials and pKas of multisubstituted anilines and aniline radical cations. Journal of the Chemical Society Perkin Transactions II, 1995, , 61-65.	0.9	35
53	Kinetics and mechanisms of reactions between H2O2and copper and copper oxides. Dalton Transactions, 2015, 44, 16045-16051.	1.6	35
54	Autoxidation of closed-shell organics: an outer-sphere electron transfer. Journal of the American Chemical Society, 1993, 115, 4945-4946.	6.6	34

#	Article	IF	CITATIONS
55	Comparison of Laboratory Compaction Methods using X-ray Computer Tomography. Road Materials and Pavement Design, 2007, 8, 139-164.	2.0	34
56	Effects of Î ³ -irradiation on the stability of colloidal Na+-Montmorillonite dispersions. Applied Clay Science, 2009, 43, 86-90.	2.6	34
57	Solvent effects on redox properties of radical ions 1. Journal of the Chemical Society Perkin Transactions II, 1999, , 425-430.	0.9	33
58	One-electron reduction potential and ring opening of the succinimidyl radical in water. The Journal of Physical Chemistry, 1993, 97, 1610-1614.	2.9	32
59	The role of surface-bound hydroxyl radicals in the reaction between H ₂ O ₂ and UO ₂ . Journal of Coordination Chemistry, 2018, 71, 1799-1807.	0.8	32
60	Confirming the Formation of Hydroxyl Radicals in the Catalytic Decomposition of H ₂ O ₂ on Metal Oxides Using Coumarin as a Probe. ChemCatChem, 2019, 11, 5435-5438.	1.8	31
61	On the catalytic effect of Pd(s) on the reduction of with H2 in aqueous solution. Journal of Nuclear Materials, 2008, 374, 290-292.	1.3	30
62	Redox properties of 4-substituted aryl methyl chalcogenides in water. Journal of the Chemical Society Perkin Transactions II, 1995, , 67-70.	0.9	29
63	Effect of \hat{I}^3 -radiation on radionuclide retention in compacted bentonite. Radiation Physics and Chemistry, 2011, 80, 1371-1377.	1.4	29
64	Substituent Effects on Thermochemical Properties of Free Radicals. New Substituent Scales for C-Centered Radicals. Journal of Chemical Information and Computer Sciences, 1998, 38, 1151-1156.	2.8	28
65	A novel approach to the analysis of substituent effects: quantitative description of ionization energies and gas basicity of amines. Journal of Molecular Graphics and Modelling, 1999, 17, 28-42.	1.3	28
66	Reduction of UO22+ by H2. Journal of Nuclear Materials, 2004, 334, 35-39.	1.3	27
67	Evaluation of the O ₂ and pH Effects on Probes for Surface Bound Hydroxyl Radicals. Journal of Physical Chemistry C, 2014, 118, 7971-7979.	1.5	27
68	Radiation Engineering of Multifunctional Nanogels. Topics in Current Chemistry, 2016, 374, 69.	3.0	27
69	On the thermodynamics of peptide oxidation: anhydrides of glycine and alanine 1. Journal of the Chemical Society Perkin Transactions II, 1998, , 1967-1972.	0.9	26
70	Gamma radiation induces hydrogen absorption by copper in water. Scientific Reports, 2016, 6, 24234.	1.6	26
71	Modelling of time resolved and long contact time dissolution studies of spent nuclear fuel in 10mM carbonate solution – A comparison between two different models and experimental data. Journal of Nuclear Materials, 2008, 375, 331-339.	1.3	25
72	Enhanced hydrogen formation during the catalytic decomposition of H2O2 on metal oxide surfaces in the presence of HO radical scavengers. Physical Chemistry Chemical Physics, 2013, 15, 12674.	1.3	25

#	Article	IF	CITATIONS
73	Utilizing thiol–ene coupling kinetics in the design of renewable thermoset resins based on <scp>d</scp> -limonene and polyfunctional thiols. RSC Advances, 2014, 4, 10317-10329.	1.7	25
74	Correlation analysis in the chemistry of free radicals. Russian Chemical Reviews, 2001, 70, 1-22.	2.5	24
75	Gyratory Compaction Analysis with Computer Tomography. Road Materials and Pavement Design, 2003, 4, 401-422.	2.0	24
76	Influence of \hat{I}^3 -radiation on the reactivity of montmorillonite towards H2O2. Radiation Physics and Chemistry, 2012, 81, 190-194.	1.4	24
77	Dissolution of UO ₂ by One- and Two-Electron Oxidants. Materials Research Society Symposia Proceedings, 2003, 807, 277.	0.1	23
78	Reactivity of hydrogen peroxide towards Fe3O4, Fe2CoO4 and Fe2NiO4. Journal of Nuclear Materials, 2004, 334, 28-34.	1.3	23
79	Solvent Effects on the Redox Properties of Cu Complexes Used as Mediators in Atom Transfer Radical Polymerization. Journal of Physical Chemistry A, 2006, 110, 10355-10360.	1.1	22
80	Simulations of H2O2 concentration profiles in the water surrounding spent nuclear fuel. Journal of Nuclear Materials, 2008, 372, 32-35.	1.3	22
81	Oxidation of UO2(s) in aqueous solution. Open Chemistry, 2008, 6, 1-14.	1.0	22
82	The effect of Y2O3 on the dynamics of oxidative dissolution of UO2. Journal of Nuclear Materials, 2010, 407, 195-199.	1.3	22
83	Kinetics and Mechanism of the Reaction between H ₂ O ₂ and Tungsten Powder in Water. Journal of Physical Chemistry C, 2015, 119, 22560-22569.	1.5	22
84	Role of the Oxide Layer in Radiation-Induced Corrosion of Copper in Anoxic Water. Journal of Physical Chemistry C, 2016, 120, 11450-11455.	1.5	22
85	Reactivity of the Carbonate Radical Anion Towards Carbohydrate and Lignin Model Compounds. Journal of Wood Chemistry and Technology, 2003, 23, 47-69.	0.9	21
86	On the origin of functionalization in one-pot radiation synthesis of nanogels from aqueous polymer solutions. RSC Advances, 2016, 6, 2582-2591.	1.7	21
87	Solvent Effects on the Redox Properties of Thioethers. Journal of Physical Chemistry A, 2006, 110, 9513-9517.	1.1	20
88	Impact of Stoichiometry on the Mechanism and Kinetics of Oxidative Dissolution of UO ₂ Induced by H ₂ O ₂ and γ-Irradiation. Journal of Physical Chemistry C, 2019, 123, 9919-9925.	1.5	20
89	Combined effects of Fe(II) and oxidizing radiolysis products on UO2 and PuO2 dissolution in a system containing solid UO2 and PuO2. Journal of Nuclear Materials, 2012, 430, 1-5.	1.3	18
90	Application of reactivity descriptors to the catalytic decomposition of hydrogen peroxide at oxide surfaces. Computational and Theoretical Chemistry, 2015, 1070, 108-116.	1.1	18

#	Article	IF	CITATIONS
91	Substituent Effects on Thermochemical Properties of C-, N-, O-, and S-Centered Radicals. Physical Interpretation of Substituent Effects. Journal of Chemical Information and Computer Sciences, 1999, 39, 1057-1063.	2.8	17
92	Synthesis and characterization of MnO2 colloids. Radiation Physics and Chemistry, 2009, 78, 939-944.	1.4	17
93	Silver enhanced TiO ₂ thin films: photocatalytic characterization using aqueous solutions of tris(hydroxymethyl)aminomethane. Dalton Transactions, 2014, 43, 344-351.	1.6	17
94	Surface reactivity of hydroxyl radicals formed upon catalytic decomposition of H2O2 on ZrO2. Journal of Molecular Catalysis A, 2015, 400, 49-55.	4.8	17
95	Radiation Induced Corrosion of Copper in Humid Air and Argon Atmospheres. Journal of the Electrochemical Society, 2017, 164, C201-C206.	1.3	17
96	On the change in UO ₂ redox reactivity as a function of H ₂ O ₂ exposure. Dalton Transactions, 2020, 49, 1241-1248.	1.6	17
97	Heterogeneous iron(II)-chloride mediated radical polymerization of styrene. Journal of Molecular Catalysis A, 2009, 306, 69-76.	4.8	16
98	Surface Reactions of H ₂ O ₂ , H ₂ , and O ₂ in Aqueous Systems Containing ZrO ₂ . Journal of Physical Chemistry C, 2016, 120, 1609-1614.	1.5	16
99	Quantitative Interpretation of Intracellular Drug Binding and Kinetics Using the Cellular Thermal Shift Assay. Biochemistry, 2018, 57, 6715-6725.	1.2	16
100	The role of molecular oxygen in the formation of radiation-engineered multifunctional nanogels. European Polymer Journal, 2019, 114, 164-175.	2.6	16
101	Generation and Study of the Reactivity of α-Ammonium Distonic Radical Cations in Solution. Journal of the American Chemical Society, 1996, 118, 11313-11314.	6.6	15
102	Redox chemistry of carbon-centered α-amino acid radicals â€. Journal of the Chemical Society Perkin Transactions II, 1997, , 2673-2676.	0.9	15
103	Study of Indigo carmine as radical probe in photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 86-91.	2.0	15
104	Effect of synthesis temperature on the morphology and stability of copper(i) hydride nanoparticles. CrystEngComm, 2013, 15, 8450.	1.3	15
105	Immobilization of selenate by iron in aqueous solution under anoxic conditions and the influence of uranyl. Journal of Nuclear Materials, 2009, 392, 519-524.	1.3	14
106	Visible Light Photocatalytic Activity in AACVDâ€Prepared Nâ€modified TiO ₂ Thin Films. Chemical Vapor Deposition, 2014, 20, 91-97.	1.4	14
107	Î ³ -radiation induced corrosion of copper in bentonite-water systems under anaerobic conditions. Radiation Physics and Chemistry, 2018, 144, 8-12.	1.4	14
108	Gamma-radiation induced synthesis of freestanding nickel nanoparticles. Dalton Transactions, 2021, 50, 376-383.	1.6	14

#	Article	IF	CITATIONS
109	Kinetics of radical-initiated chain bromination of 2-methyl-2-propanol by N-bromosuccinimide in water. Journal of the American Chemical Society, 1993, 115, 3503-3510.	6.6	13
110	Remote substituent effects on polar and non-polar covalent bonds. Journal of the Chemical Society Perkin Transactions II, 1994, , 2149-2154.	0.9	13
111	Simulation of radiation induced dissolution of spent nuclear fuel using the steady-state approach. A comparison to experimental data. Journal of Nuclear Materials, 2008, 374, 286-289.	1.3	13
112	Radiation Induced Corrosion of Copper in Anoxic Aqueous Solution. Electrochemical and Solid-State Letters, 2012, 15, C5.	2.2	13
113	H2O2 and radiation induced dissolution of UO2 and SIMFUEL in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si26.gif" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>HCO</mml:mtext></mml:mrow><m deficient aqueous solution. Journal of Nuclear Materials. 2013. 443. 291-297.</m </mml:msubsup></mml:mrow></mml:math 	ıml:mrow>	• < 13 1:mn> 3 <
114	Meta-studtite stability in aqueous solutions. Impact of HCO ₃ ^{â^²} , H ₂ O ₂ and ionizing radiation on dissolution and speciation. Dalton Transactions, 2021, 50, 6568-6577.	1.6	13
115	The influence of particle size on the kinetics of UO2 oxidation in aqueous powder suspensions. Journal of Nuclear Materials, 2006, 353, 75-79.	1.3	12
116	Stability of Studtite in Aqueous Suspension: Impact of HCO3– and Ionizing Radiation on the Dynamics of Dissolution. ACS Applied Energy Materials, 2020, 3, 352-357.	2.5	12
117	Simulations of H2O2 concentration profiles in the water surrounding spent nuclear fuel taking mixed radiation fields and bulk reactions into account. Journal of Nuclear Materials, 2008, 374, 281-285.	1.3	11
118	A study on the immobilization of selenium oxyanions by H2/Pd(s) in aqueous solution. Journal of Contaminant Hydrology, 2010, 116, 16-23.	1.6	11
119	Oxidative dissolution of actinide oxides in H2O2 containing aqueous solution – A preliminary study. Journal of Nuclear Materials, 2010, 397, 128-131.	1.3	11
120	Predicting the Limit of Control in the ATRP Process: Results from Kinetic Simulations. Macromolecular Theory and Simulations, 2011, 20, 814-825.	0.6	11
121	Radiation Effects on Materials Used in Geological Repositories for Spent Nuclear Fuel. ISRN Materials Science, 2012, 2012, 1-13.	1.0	11
122	Hydroxyl radical production in aerobic aqueous solution containing metallic tungsten. Catalysis Communications, 2015, 71, 93-96.	1.6	11
123	Radiation induced dissolution of (U, Gd)O2 pellets in aqueous solution – A comparison to standard UO2 pellets. Journal of Nuclear Materials, 2019, 514, 216-223.	1.3	11
124	Numerical Simulations of Nanogel Synthesis Using Pulsed Electron Beam. Macromolecular Theory and Simulations, 2020, 29, 1900046.	0.6	11
125	On the mechanism of Î ³ -radiation-induced corrosion of copper in water. Corrosion Science, 2021, 182, 109279.	3.0	11
126	Colloid Diffusion in Compacted Bentonite: Microstructural Constraints. Clays and Clay Minerals, 2010, 58, 532-541.	0.6	10

#	Article	IF	CITATIONS
127	An Overview of Interfacial Radiation Chemistry in Nuclear Technology. Israel Journal of Chemistry, 2014, 54, 292-301.	1.0	10
128	Electrochemical and Surface Characterization of Uranium Dioxide Containing Rare-Earth Oxide (Y2O3) and Metal (Pd) Particles. Electrochimica Acta, 2014, 130, 29-39.	2.6	10
129	On the nature of macroradicals formed upon radiolysis of aqueous poly(N-vinylpyrrolidone) solutions. Radiation Physics and Chemistry, 2020, 174, 108900.	1.4	9
130	X-Ray and ultraviolet photoelectron spectroscopy studies of Uranium(<scp>iv</scp>),(<scp>v</scp>) and(<scp>vi</scp>) exposed to H ₂ O-plasma under UHV conditions. Dalton Transactions, 2021, 50, 729-738.	1.6	9
131	On the impact of reactive solutes on radiation induced oxidative dissolution of UO2. Journal of Nuclear Materials, 2009, 385, 595-600.	1.3	8
132	Inhibition of radiation induced dissolution of UO2 by sulfide – A comparison with the hydrogen effect. Journal of Nuclear Materials, 2013, 434, 38-42.	1.3	8
133	Oxidative dissolution of ADOPT compared to standard UO 2 fuel. Journal of Nuclear Materials, 2017, 488, 123-128.	1.3	8
134	Effects of cellulose degradation products on the mobility of Eu(III) in repositories for low and intermediate level radioactive waste. Journal of Hazardous Materials, 2017, 340, 384-389.	6.5	8
135	Radiation-Induced Processes at Solid–Liquid Interfaces. , 2010, , 301-323.		8
136	Comment on the use of phenols as probes for the kinetics of heterogeneous photocatalysis. Applied Catalysis B: Environmental, 2014, 158-159, 429-431.	10.8	7
137	Numerical Simulation of the Kinetics of Radical Decay in Single-Pulse High-Energy Electron-Irradiated Polymer Aqueous Solutions. Journal of Physical Chemistry A, 2019, 123, 5043-5050.	1.1	7
138	Gyratory Compaction Analysis with Computer Tomography. Road Materials and Pavement Design, 2003, 4, 401-422.	2.0	7
139	Modeling of the Effects of Radiolysis on UO ₂ -dissolution Employing Recent Experimental Data. Materials Research Society Symposia Proceedings, 2003, 807, 283.	0.1	6
140	Radiation enhanced reactivity of UO2. Journal of Nuclear Materials, 2006, 354, 131-136.	1.3	6
141	Factors influencing the rate of radiation-induced dissolution of spent nuclear fuel. Research on Chemical Intermediates, 2009, 35, 465-478.	1.3	6
142	Kinetic evaluation of sorption and desorption. Adsorption, 2010, 16, 155-159.	1.4	6
143	Reduction of selenite and selenate on anoxically corroded iron and the synergistic effect of uranyl reduction. Journal of Nuclear Materials, 2010, 406, 230-237.	1.3	6
144	Investigation of iron complexes in ATRP: Indications of different iron species in normal and reverse ATRP. Journal of Molecular Catalysis A, 2011, 346, 20-28.	4.8	6

#	Article	IF	CITATIONS
145	Improved Texturing and Photocatalytic Efficiency in Ti <scp>O</scp> ₂ Films Grown Using Aerosolâ€ <scp>A</scp> ssisted <scp>CVD</scp> and Atmospheric Pressure CVD. Chemical Vapor Deposition, 2013, 19, 355-362.	1.4	6
146	Effect of bentonite on radiation induced dissolution of UO2 in an aqueous system. Journal of Nuclear Materials, 2014, 447, 73-76.	1.3	6
147	H2O2 and \hat{I}^3 -radiation induced corrosion of 304L stainless steel in aqueous systems. Radiation Physics and Chemistry, 2019, 159, 159-165.	1.4	6
148	Mixed H ₂ O/H ₂ plasma-induced redox reactions of thin uranium oxide films under UHV conditions. Dalton Transactions, 2021, 50, 12583-12591.	1.6	6
149	Micro- to Nanoscale Bio-Hybrid Hydrogels Engineered by Ionizing Radiation. Biomolecules, 2021, 11, 47.	1.8	6
150	Monitoring the gradual change in oxidation state during surface oxidation or reduction of uranium oxides by photoemission spectroscopy of the 5f states. Journal of Nuclear Materials, 2022, 560, 153504.	1.3	6
151	Reply to Comment on "Redox and Acidity Properties of 2,2â€~- and 4,4â€~-Biphenols and the Corresponding Phenoxyl Radicals― Journal of Physical Chemistry A, 2003, 107, 5878-5879.	1.1	5
152	Effects of ionic strength on the kinetics for UO2 oxidation. Journal of Nuclear Materials, 2008, 373, 190-193.	1.3	5
153	pH-Control as a way to fine-tune the Cu/Cu ₂ O ratio in radiation induced synthesis of Cu ₂ O particles. Dalton Transactions, 2018, 47, 16139-16144.	1.6	5
154	Dynamics for oxidation of Fe3O4, Fe2CoO4 and Fe2NiO4. Journal of Nuclear Materials, 2005, 345, 219-224.	1.3	4
155	UO2 oxidation site densities determined by one- and two-electron oxidants. Journal of Nuclear Materials, 2008, 373, 186-189.	1.3	4
156	Tris(hydroxymethyl)aminomethane as a Probe in Heterogeneous TiO2 Photocatalysis. Journal of Advanced Oxidation Technologies, 2012, 15, .	0.5	4
157	Reply to "Comment on â€~Coumarin as a Quantitative Probe for Hydroxyl Radical Formation in Heterogeneous Photocatalysis'― Journal of Physical Chemistry C, 2019, 123, 20685-20686.	1.5	4
158	Anion effects on the catalytic decomposition of H 2 O 2 on ZrO 2 (s) in aqueous systems. ChemistrySelect, 2020, 5, 13754-13760.	0.7	4
159	Time-dependent surface modification of uranium oxides exposed to water plasma. Dalton Transactions, 2021, 50, 4796-4804.	1.6	4
160	Kinetic Effects of H ₂ O ₂ Speciation on the Overall Peroxide Consumption at UO ₂ –Water Interfaces. ACS Omega, 2022, 7, 15929-15935.	1.6	4
161	Reduction Potentials and Kinetics of β-Fragmentation Reactions of 4-Substituted Benzoylthiyl Radicals. Journal of Physical Chemistry A, 2000, 104, 8524-8526.	1.1	3
162	Redox chemistry and energetics of radical cations of substituted benzenes. Studies in Physical and Theoretical Chemistry, 2001, , 319-340.	0.0	3

#	Article	IF	CITATIONS
163	Characterization and degradation of a polyaryl ether based superplasticizer for use in concrete barriers in deep geological repositories. Applied Geochemistry, 2018, 95, 172-181.	1.4	3
164	Pdâ€Catalyzed Surface Reactions of Importance in Radiation Induced Dissolution of Spent Nuclear Fuel Involving H ₂ . ChemCatChem, 2019, 11, 5108-5115.	1.8	3
165	Radiation induced dissolution of U3Si2 - A potential accident tolerantÂfuel. Journal of Nuclear Materials, 2019, 517, 263-267.	1.3	3
166	On the reactivity of aqueous radiolysis products towards carbon black used in in-situ radiation-synthesis of catalytic nanoparticles in graphite electrodes. Carbon, 2021, 173, 61-68.	5.4	3
167	H ₂ O ₂ â€induced Oxidative Dissolution of UO ₂ in Saline Solutions. European Journal of Inorganic Chemistry, 2021, 2021, 4175-4182.	1.0	3
168	On the Stability of Uranium Carbide in Aqueous Solution—Effects of HCO3– and H2O2. ACS Omega, 2021, 6, 24289-24295.	1.6	3
169	Radiation Chemistry Provides Nanoscopic Insights into the Role of Intermediate Phases in CeO ₂ Mesocrystal Formation. Angewandte Chemie - International Edition, 2022, 61, e202112204.	7.2	3
170	Inorganic/organic hybrid nanoparticles synthesized in a two-step radiation-driven process. Radiation Physics and Chemistry, 2022, 197, 110166.	1.4	3
171	Stability of Studtite in Saline Solution: Identification of Uranyl–Peroxo–Halo Complex. Inorganic Chemistry, 2022, 61, 8455-8466.	1.9	3
172	Exploring the limitations of the Hantzsch method used for quantification of hydroxyl radicals in systems of relevance for interfacial radiation chemistry. Radiation Physics and Chemistry, 2017, 130, 1-4.	1.4	2
173	Impact of H ₂ and Consecutive H ₂ O ₂ Exposures on the Oxidative Dissolution of (U _{1–<i>x</i>} Gd <i>_x</i>)O ₂ Pellets Under Deep Repository Conditions for Spent Nuclear Fuel. European Journal of Inorganic Chemistry, 2020, 2020, 1946-1950.	1.0	2
174	Solubilisation of Ni(II) and Eu(III) through complexation with a polyaryl ether based superplasticizer in alkaline media. Chemosphere, 2021, 263, 127686.	4.2	2
175	Geometrical aspects of alpha dose rates from UO2 based fuels. Radiation Physics and Chemistry, 2022, 199, 110336.	1.4	2
176	Can redox sensitive radionuclides be immobilized on the surface of spent nuclear fuel? – A model study on the reduction of Se(IV)aq on Pd-doped UO2 under H2 atmosphere. Journal of Nuclear Materials, 2009, 392, 505-509.	1.3	1
177	Can H2 enhance the oxidative dissolution of UO2?. Journal of Nuclear Materials, 2016, 477, 85-87.	1.3	1
178	Incorporation of strontium and europium in crystals of α-calcium isosaccharinate. Journal of Hazardous Materials, 2019, 364, 309-316.	6.5	1
179	Scalable InkJet based additive fabrication of photocatalytic TiO2 thin films. ChemPhotoChem, 0, , .	1.5	1
180	Radiation Chemistry Provides Nanoscopic Insights into the Role of Intermediate Phases in CeO ₂ Mesocrystal Formation. Angewandte Chemie, 2022, 134, .	1.6	1

#	Article	IF	CITATIONS
181	Publisher's Note: Radiation Induced Corrosion of Copper in Anoxic Aqueous Solution [Electrochem. Solid-State Lett., 15, C5 (2012)]. Electrochemical and Solid-State Letters, 2012, 15, S5.	2.2	0
182	Î ³ -Radiation and H2O2 induced oxidative dissolution of uranium(iv) oxide in aqueous solution containing phthalic acid. Dalton Transactions, 2020, 49, 1907-1914.	1.6	0