
Victor Belitsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579339/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The <i>Herschel</i> -Heterodyne Instrument for the Far-Infrared (HIFI). Astronomy and Astrophysics, 2010, 518, L6.	5.1	557
2	A 1.3-THz Balanced Waveguide HEB Mixer for the APEX Telescope. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 89-98.	4.6	139
3	Millimetron—a large Russian-European submillimeter space observatory. Experimental Astronomy, 2009, 23, 221-244.	3.7	58
4	Waveguide-to-microstrip transition with integrated bias-T. IEEE Microwave and Wireless Components Letters, 2003, 13, 262-264.	3.2	49
5	SEPIA – a new single pixel receiver at the APEX telescope. Astronomy and Astrophysics, 2018, 612, A23.	5.1	48
6	Performance of the First ALMA Band 5 Production Cartridge. IEEE Transactions on Terahertz Science and Technology, 2012, 2, 208-214.	3.1	42
7	Epitaxial growth of ultra-thin NbN films on Al _{<i>x</i>} Ga _{1â^'<i>x</i>} N buffer-layers. Superconductor Science and Technology, 2014, 27, 065009.	3.5	32
8	Design of Wideband Waveguide Hybrid With Ultra-Low Amplitude Imbalance. IEEE Transactions on Terahertz Science and Technology, 2016, 6, 83-90.	3.1	27
9	All-metal micromachining for the fabrication of sub-millimetre and THz waveguide components and circuits. Journal of Micromechanics and Microengineering, 2008, 18, 095004.	2.6	26
10	Novel Waveguide 3 dB Hybrid With Improved Amplitude Imbalance. IEEE Microwave and Wireless Components Letters, 2014, 24, 212-214.	3.2	26
11	Growth and characterization of epitaxial ultra-thin NbN films on 3C-SiC/Si substrate for terahertz applications. Superconductor Science and Technology, 2011, 24, 035016.	3.5	25
12	A new 3-dB power divider for millimeter-wavelengths. IEEE Microwave and Wireless Components Letters, 2001, 11, 30-32.	3.2	24
13	ALMA Band 5 receiver cartridge. Astronomy and Astrophysics, 2018, 611, A98.	5.1	23
14	A Proposed Heterodyne Receiver for the Origins Space Telescope. IEEE Transactions on Terahertz Science and Technology, 2018, 8, 558-571.	3.1	23
15	Noise and IF Gain Bandwidth of a Balanced Waveguide NbN/GaN Hot Electron Bolometer Mixer Operating at 1.3 THz. IEEE Transactions on Terahertz Science and Technology, 2018, 8, 365-371.	3.1	23
16	Wideband 67â^'116 GHz receiver development for ALMA Band 2. Astronomy and Astrophysics, 2020, 634, A46.	5.1	23
17	SUPERCONDUCTING MICROSTRIP LINE MODEL STUDIES AT MILLIMETRE AND SUB-MILLIMETRE WAVES. Journal of Infrared, Millimeter and Terahertz Waves, 2007, 27, 809-834.	0.6	21
18	Aging- and annealing-induced variations in Nb/Al–AlOx/Nb tunnel junction properties. Journal of Applied Physics, 2011, 109, .	2.5	21

VICTOR BELITSKY

#	Article	IF	CITATIONS
19	Micromachining approach in fabricating of THz waveguide components. Microelectronics Journal, 2005, 36, 683-686.	2.0	20
20	A sideband separating mixer for 85-115 GHz. IEEE Microwave and Wireless Components Letters, 2004, 14, 256-258.	3.2	15
21	GaAs HEMT low-noise cryogenic amplifiers from C-band to X-band with 0.7-K/GHz noise temperature. IEEE Microwave and Wireless Components Letters, 2003, 13, 96-98.	3.2	14
22	Design and Characterization of a 211–275 GHz Sideband Separating Mixer for the APEX Telescope. IEEE Microwave and Wireless Components Letters, 2008, 18, 58-60.	3.2	14
23	An SIS Mixer With 2hf/k DSB Noise Temperature at 163 - 211 GHz Band. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 416-421.	3.1	14
24	Millimeter-Wave Wideband Waveguide Power Divider With Improved Isolation Between Output Ports. IEEE Transactions on Terahertz Science and Technology, 2021, 11, 408-416.	3.1	14
25	A Technology Demonstrator for 1.6–2.0ÂTHz Waveguide HEB Receiver with a Novel Mixer Layout. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32, 451-465.	2.2	13
26	Superconducting 4–8-GHz Hybrid Assembly for 2SB Cryogenic THz Receivers. IEEE Transactions on Terahertz Science and Technology, 2014, 4, 193-200.	3.1	13
27	Design and Implementation of a Compact 90° Waveguide Twist With Machining Tolerant Layout. IEEE Microwave and Wireless Components Letters, 2020, 30, 741-744.	3.2	13
28	Spiral antenna NbN hot-electron bolometer mixer at submm frequencies. IEEE Transactions on Applied Superconductivity, 1997, 7, 3395-3398.	1.7	12
29	High quality microstrip termination for MMIC and millimeter-wave applications. , 2005, , .		11
30	Design, simulations and optimization of micromachined Golay-cell based THz sensors operating at room temperature. Procedia Chemistry, 2009, 1, 1175-1178.	0.7	11
31	Wideband Planar Hybrid With Ultralow Amplitude Imbalance. IEEE Microwave and Wireless Components Letters, 2017, 27, 230-232.	3.2	11
32	Compact Low-Loss Chip-to-Waveguide and Chip-to-Chip Packaging Concept Using EBG Structures. IEEE Microwave and Wireless Components Letters, 2021, 31, 9-12.	3.2	11
33	Facility heterodyne receiver for the Atacama Pathfinder Experiment Telescope. , 2007, , .		10
34	A Novel Design of Broadband Waveguide Directional Couplers and 3-dB Hybrids. , 2006, , .		9
35	Frequency Multiplier Based on Distributed Superconducting Tunnel Junctions: Theory, Design, and Characterization. IEEE Transactions on Terahertz Science and Technology, 2016, , 1-13.	3.1	9
36	Terahertz components packaging using integrated waveguide technology. , 2011, , .		8

VICTOR BELITSKY

#	Article	IF	CITATIONS
37	Optics Design and Verification for the APEX Swedish Heterodyne Facility Instrument (SHeFI). Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30, 746-761.	2.2	7
38	Experimental Study of Frequency Multiplication in a Distributed Array of SIS Junctions. IEEE Transactions on Terahertz Science and Technology, 2014, 4, 254-259.	3.1	7
39	A 275–370 GHz Receiver Employing Novel Probe Structure. Journal of Infrared, Millimeter and Terahertz Waves, 2005, 26, 867-879.	0.6	6
40	Refractory material SIS junction structures. IEEE Transactions on Magnetics, 1987, 23, 684-687.	2.1	5
41	THz Frequency Up-Conversion using Superconducting Tunnel Junction. IEEE Microwave and Wireless Components Letters, 2016, 26, 831-833.	3.2	5
42	Direct Measurement of Superconducting Tunnel Junction Capacitance. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 464-469.	3.1	4
43	Harmonic and reactive behavior of the quasiparticle tunnel current in SIS junctions. AIP Advances, 2016, 6, 045109.	1.3	4
44	Dependence of the scatter of the electrical properties on local non-uniformities of the tunnel barrier in Nb/Al-AlOx/Nb junctions. Journal of Applied Physics, 2016, 119, 054502.	2.5	4
45	Waveguide-to-Substrate Transition Based on Unilateral Substrateless Finline Structure: Design, Fabrication, and Characterization. IEEE Transactions on Terahertz Science and Technology, 2020, 10, 668-676.	3.1	4
46	Suspended GaN beams and membranes on Si as a platform for waveguide-based THz applications. Journal of Micromechanics and Microengineering, 2018, 28, 105007.	2.6	3
47	Superconducting 4–8 GHz IF Hybrid for Low Noise mm-Wave Sideband Separation SIS Receiver. IEEE Microwave and Wireless Components Letters, 2012, 22, 589-591.	3.2	2
48	Specific Capacitance Dependence on the Specific Resistance in Nb/Al–AlOx/Nb Tunnel Junctions. IEEE Transactions on Terahertz Science and Technology, 2017, 7, 586-592.	3.1	2
49	A Nonlinear Transmission Line Model for Simulating Distributed SIS Frequency Multipliers. IEEE Transactions on Terahertz Science and Technology, 2020, 10, 246-255.	3.1	2
50	Design and simulations of a micromachined Golay-cell based THz sensors for room temperature imaging applications. , 2010, , .		1
51	Multiloop integrated dc SQUID low noise RF amplifier. Cryogenics, 1992, 32, 505-508.	1.7	0
52	Scalar beam pattern measurements for characterization of sub-millimeter receivers. , 2006, , .		0
53	Design and performance of ALMA band 5 receiver cartridge. , 2010, , .		0
54	PHOCUS radiometer. Atmospheric Measurement Techniques, 2012, 5, 1359-1373.	3.1	0

#	Article	IF	CITATIONS
55	Experimental verification of the pumping of SIS mixer with an distributed SIS frequency doubler. , 2016, , .		0
56	Guest Editorial: Mini-Special Issue on the 30th International Symposium on Space Terahertz Technology (ISSTT 2019). IEEE Transactions on Terahertz Science and Technology, 2019, 9, 530-531.	3.1	0
57	Wideband Slotline-to-Microstrip Transition for 210–375 GHz Based on Marchand Baluns. IEEE Transactions on Terahertz Science and Technology, 2022, 12, 307-316.	3.1	0