List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579261/publications.pdf Version: 2024-02-01

		10351	12233
365	21,793	72	133
papers	citations	h-index	g-index
372	372	372	22465
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction. ACS Nano, 2012, 6, 205-211.	7.3	1,783
2	A Lightweight TiO ₂ /Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Longâ€Life Lithium–Sulfur Batteries. Advanced Materials, 2015, 27, 2891-2898.	11.1	667
3	Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nature Communications, 2017, 8, 15815.	5.8	576
4	Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-Doped Multilayer Graphene. ACS Nano, 2014, 8, 6856-6862.	7.3	519
5	Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. Journal of Power Sources, 2013, 236, 238-249.	4.0	450
6	Band Structure, Phonon Scattering, and the Performance Limit of Single-Walled Carbon Nanotube Transistors. Physical Review Letters, 2005, 95, 146805.	2.9	447
7	Growth of Millimeter-Long and Horizontally Aligned Single-Walled Carbon Nanotubes on Flat Substrates. Journal of the American Chemical Society, 2003, 125, 5636-5637.	6.6	418
8	Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes Using "Fast-Heating―Chemical Vapor Deposition Process. Nano Letters, 2004, 4, 1025-1028.	4.5	367
9	Catalyst-free synthesis of iodine-doped graphenevia a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium. Chemical Communications, 2012, 48, 1027-1029.	2.2	336
10	Sulfur–nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions. Nanoscale, 2013, 5, 3283.	2.8	304
11	Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films. Journal of Physical Chemistry B, 1999, 103, 4223-4227.	1.2	284
12	Plasma Activation of Carbon Nanotubes for Chemical Modification. Journal of Physical Chemistry B, 2001, 105, 618-622.	1.2	265
13	Structure and growth of aligned carbon nanotube films by pyrolysis. Chemical Physics Letters, 2000, 316, 349-355.	1.2	248
14	Aligned Coaxial Nanowires of Carbon Nanotubes Sheathed with Conducting Polymers. Angewandte Chemie - International Edition, 2000, 39, 3664-3667.	7.2	235
15	Na ₃ V ₂ (PO ₄) ₃ : an advanced cathode for sodium-ion batteries. Nanoscale, 2019, 11, 2556-2576.	2.8	227
16	Metal-Catalyst-Free Growth of Single-Walled Carbon Nanotubes on Substrates. Journal of the American Chemical Society, 2009, 131, 2094-2095.	6.6	226
17	INVESTIGATION OF HOMOLOGOUS SERIES AS PRECURSORY HYDROCARBONS FOR ALIGNED CARBON NANOTUBE FORMATION BY THE SPRAY PYROLYSIS METHOD. Nano, 2011, 06, 205-213.	0.5	226
18	Anode Improvement in Rechargeable Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1700542.	11.1	225

#	Article	IF	CITATIONS
19	Stringing Bimetallic Metal–Organic Frameworkâ€Derived Cobalt Phosphide Composite for Highâ€Efficiency Overall Water Splitting. Advanced Science, 2020, 7, 1903195.	5.6	214
20	Self-Assembled Three-Dimensional Hierarchical Umbilicate Bi ₂ WO ₆ Microspheres from Nanoplates: Controlled Synthesis, Photocatalytic Activities, and Wettability. Journal of Physical Chemistry C, 2009, 113, 4369-4374.	1.5	213
21	Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale, 2012, 4, 6455.	2.8	212
22	Highly Efficient Binding of DNA on the Sidewalls and Tips of Carbon Nanotubes Using Photochemistry. Nano Letters, 2004, 4, 89-93.	4.5	209
23	Nonenzymatic electrochemical detection of glucose using well-distributed nickel nanoparticles on straight multi-walled carbon nanotubes. Biosensors and Bioelectronics, 2011, 30, 28-34.	5.3	207
24	One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH) 2 composites for high performance electrochemical supercapacitor. Journal of Power Sources, 2013, 243, 555-561.	4.0	204
25	Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Longâ€Life Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602380.	10.2	201
26	MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction. Carbon, 2019, 141, 643-651.	5.4	192
27	Chemical and morphological transformation of MOF-derived bimetallic phosphide for efficient oxygen evolution. Nano Energy, 2019, 62, 745-753.	8.2	189
28	Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium–Sulfur Batteries. ACS Nano, 2017, 11, 2209-2218.	7.3	188
29	Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials. Nanoscale, 2014, 6, 13740-13747.	2.8	183
30	Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon, 2019, 146, 248-256.	5.4	177
31	Luminescent 4f and d-4f polynuclear complexes and coordination polymers with flexible salen-type ligands. Coordination Chemistry Reviews, 2014, 273-274, 63-75.	9.5	157
32	Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF6:Mn4+ for LED applications. Journal of Materials Chemistry C, 2014, 2, 2301.	2.7	156
33	Molybdenum Carbide Nanoparticles Coated into the Graphene Wrapping Nâ€Doped Porous Carbon Microspheres for Highly Efficient Electrocatalytic Hydrogen Evolution Both in Acidic and Alkaline Media. Advanced Science, 2018, 5, 1700733.	5.6	152
34	Persistent zinc-ion storage in mass-produced V2O5 architectures. Nano Energy, 2019, 60, 171-178.	8.2	149
35	Plasma Etching for Purification and Controlled Opening of Aligned Carbon Nanotubes. Journal of Physical Chemistry B, 2002, 106, 3543-3545.	1.2	144
36	The formation mechanism, improved photoluminescence and LED applications of red phosphor K ₂ SiF ₆ :Mn ⁴⁺ . Journal of Materials Chemistry C, 2014, 2, 3879-3884.	2.7	142

#	Article	IF	CITATIONS
37	Metal Chalcogenides: Paving the Way for Highâ€Performance Sodium/Potassium″on Batteries. Small Methods, 2020, 4, 1900563.	4.6	140
38	A review of recent work on using metal–organic frameworks to grow carbon nanotubes. Chemical Communications, 2020, 56, 10809-10823.	2.2	135
39	Anion-Dependent Self-Assembly of Near-Infrared Luminescent 24- and 32-Metal Cd–Ln Complexes with Drum-like Architectures. Journal of the American Chemical Society, 2013, 135, 8468-8471.	6.6	134
40	Sulfurâ€Impregnated, Sandwichâ€Type, Hybrid Carbon Nanosheets with Hierarchical Porous Structure for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2014, 4, 1301988.	10.2	130
41	Patterned Growth of Well-Aligned Carbon Nanotubes:  A Photolithographic Approach. Journal of the American Chemical Society, 1999, 121, 10832-10833.	6.6	126
42	Porous carbon nanotubes etched by water steam for high-rate large-capacity lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 8683-8689.	5.2	123
43	A lightweight multifunctional interlayer of sulfur–nitrogen dual-doped graphene for ultrafast, long-life lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 15343-15352.	5.2	120
44	Oxyvanite V ₃ O ₅ : A new intercalationâ€ŧype anode for lithiumâ€ion battery. InformaÄnÃ-Materiály, 2019, 1, 251-259.	8.5	117
45	Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes. Journal of Magnetism and Magnetic Materials, 2001, 231, 9-12.	1.0	115
46	Polymer Electrolyte-Gated Carbon Nanotube Field-Effect Transistor. Nano Letters, 2004, 4, 623-627.	4.5	113
47	Patterned Growth of Well-Aligned Carbon Nanotubes:Â A Soft-Lithographic Approach. Journal of Physical Chemistry B, 2000, 104, 2193-2196.	1.2	112
48	Size control of Au@Cu ₂ O octahedra for excellent photocatalytic performance. Journal of Materials Chemistry, 2012, 22, 719-724.	6.7	112
49	Optimized photoluminescence of red phosphor K ₂ TiF ₆ :Mn ⁴⁺ synthesized at room temperature and its formation mechanism. Journal of Materials Chemistry C, 2015, 3, 1935-1941.	2.7	107
50	Facile synthesis of Cu2ZnSnS4 nanocrystals. CrystEngComm, 2011, 13, 3310.	1.3	106
51	Constructing hierarchical ZnIn2S4/g-C3N4 S-scheme heterojunction for boosted CO2 photoreduction performance. Chemical Engineering Journal, 2022, 437, 135153.	6.6	102
52	A red phosphor BaTiF ₆ :Mn ⁴⁺ : reaction mechanism, microstructures, optical properties, and applications for white LEDs. Dalton Transactions, 2014, 43, 9414-9418.	1.6	100
53	Fe7C3 nanoparticles with in situ grown CNT on nitrogen doped hollow carbon cube with greatly enhanced conductivity and ORR performance for alkaline fuel cell. Carbon, 2021, 174, 531-539.	5.4	100
54	Bi nanoparticles/Bi2O3 nanosheets with abundant grain boundaries for efficient electrocatalytic CO2 reduction. Electrochimica Acta, 2019, 298, 580-586.	2.6	98

#	Article	IF	CITATIONS
55	B, N-doped ultrathin carbon nanosheet superstructure for high-performance oxygen reduction reaction in rechargeable zinc-air battery. Carbon, 2020, 164, 398-406.	5.4	96
56	Chemical Vapor Depositions of Single-Walled Carbon Nanotubes Catalyzed by Uniform Fe2O3Nanoclusters Synthesized Using Diblock Copolymer Micelles. Journal of Physical Chemistry B, 2004, 108, 6124-6129.	1.2	92
57	Facile Construction of Manganese Oxide Doped Carbon Nanotube Catalysts with High Activity for Oxygen Reduction Reaction and Investigations into the Origin of their Activity Enhancement. ACS Applied Materials & Interfaces, 2011, 3, 2601-2606.	4.0	92
58	Tunable luminescence and energy transfer properties of Bi ³⁺ and Mn ⁴⁺ co-doped Ca ₁₄ Al ₁₀ Zn ₆ O ₃₅ phosphors for agricultural applications. RSC Advances, 2017, 7, 14868-14875.	1.7	90
59	An electrochemical impedance sensor for the label-free ultrasensitive detection of interleukin-6 antigen. Sensors and Actuators B: Chemical, 2013, 178, 310-315.	4.0	88
60	Electrochemical detection of hepatitis B and papilloma virus DNAs using SWCNT array coated with gold nanoparticles. Biosensors and Bioelectronics, 2013, 41, 205-210.	5.3	88
61	Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Research, 2017, 10, 2699-2711.	5.8	85
62	Nanostructured Li ₃ V ₂ (PO ₄) ₃ Cathodes. Small, 2018, 14, e1800567.	5.2	85
63	A High-Capacity Ammonium Vanadate Cathode for Zinc-Ion Battery. Nano-Micro Letters, 2020, 12, 67.	14.4	85
64	Facile synthesis of nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. Sensors and Actuators B: Chemical, 2012, 168, 1-7.	4.0	82
65	Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 7538-7551.	7.3	80
66	Catalyst-free growth of large scale nitrogen-doped carbon spheres as efficient electrocatalysts for oxygen reduction in alkaline medium. Journal of Power Sources, 2011, 196, 9970-9974.	4.0	79
67	Metal–Organic Framework Derived Ultrafine Sb@Porous Carbon Octahedron <i>via In Situ</i> Substitution for High-Performance Sodium-Ion Batteries. ACS Nano, 2021, 15, 15104-15113.	7.3	79
68	Bulk Hexagonal Boron Nitride with a Quasiâ€Isotropic Thermal Conductivity. Advanced Functional Materials, 2018, 28, 1707556.	7.8	78
69	CoMo carbide/nitride from bimetallic MOF precursors for enhanced OER performance. International Journal of Hydrogen Energy, 2021, 46, 22268-22276.	3.8	78
70	Raman Spectroscopy and Imaging of Ultralong Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 3751-3758.	1.2	75
71	A Facile and General Approach for the Direct Fabrication of 3D, Vertically Aligned Carbon Nanotube Array/Transition Metal Oxide Composites as Nonâ€Pt Catalysts for Oxygen Reduction Reactions. Advanced Materials, 2014, 26, 3156-3161.	11.1	74
72	Controlled Growth of Ag/Au Bimetallic Nanorods through Kinetics Control. Chemistry of Materials, 2013, 25, 34-41.	3.2	73

#	Article	IF	CITATIONS
73	Boron Nitride Nanosheets Improve Sensitivity and Reusability of Surfaceâ€Enhanced Raman Spectroscopy. Angewandte Chemie - International Edition, 2016, 55, 8405-8409.	7.2	73
74	A nickel hydroxide-coated 3D porous graphene hollow sphere framework as a high performance electrode material for supercapacitors. Physical Chemistry Chemical Physics, 2014, 16, 4186.	1.3	72
75	Subnanometer Molybdenum Sulfide on Carbon Nanotubes as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 3543-3550.	4.0	72
76	Raman Spectral Imaging of a Carbon Nanotube Intramolecular Junction. Physical Review Letters, 2005, 94, 016802.	2.9	71
77	Oriented Long Single Walled Carbon Nanotubes on Substrates from Floating Catalysts. Journal of Physical Chemistry B, 2003, 107, 13251-13254.	1.2	68
78	Cross-Linked Chains of Metal–Organic Framework Afford Continuous Ion Transport in Solid Batteries. ACS Energy Letters, 2021, 6, 2434-2441.	8.8	67
79	Selective Etching Induces Selective Growth and Controlled Formation of Various Platinum Nanostructures by Modifying Seed Surface Free Energy. ACS Nano, 2012, 6, 4072-4082.	7.3	65
80	General approach to MOF-derived core-shell bimetallic oxide nanowires for fast response to glucose oxidation. Sensors and Actuators B: Chemical, 2020, 306, 127551.	4.0	64
81	Interface engineering in transition metal-based heterostructures for oxygen electrocatalysis. Materials Chemistry Frontiers, 2021, 5, 1033-1059.	3.2	64
82	Anion-Dependent Crystallization of Four Supramolecular Cadmium Complexes: Structures and Property Studies. Crystal Growth and Design, 2008, 8, 3401-3407.	1.4	63
83	Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 7761-7766.	1.3	61
84	Synthesis of AgInS2 quantum dots with tunable photoluminescence for sensitized solar cells. Journal of Power Sources, 2017, 341, 11-18.	4.0	61
85	Anion dependent self-assembly of drum-like 30- and 32-metal Cd–Ln nanoclusters: visible and NIR luminescent sensing of metal cations. Journal of Materials Chemistry C, 2018, 6, 865-874.	2.7	61
86	Growth of Nanobipyramid by Using Large Sized Au Decahedra as Seeds. ACS Applied Materials & Interfaces, 2013, 5, 13340-13352.	4.0	60
87	Controlled Growth of Long GaN Nanowires from Catalyst Patterns Fabricated by "Dip-Pen― Nanolithographic Techniques. Chemistry of Materials, 2004, 16, 1633-1636.	3.2	58
88	Extremely sensitive mechanochromic photonic crystals with broad tuning range of photonic bandgap and fast responsive speed for high-resolution multicolor display applications. Chemical Engineering Journal, 2022, 429, 132342.	6.6	58
89	A bimetallic carbide derived from a MOF precursor for increasing electrocatalytic oxygen evolution activity. Chemical Communications, 2017, 53, 13027-13030.	2.2	57
90	Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers. Nano Research, 2016, 9, 3772-3780.	5.8	56

#	Article	IF	CITATIONS
91	Carbon quantum dots/Zn2+ ions doped-CdS nanowires with enhanced photocatalytic activity for reduction of 4-nitroaniline to p-phenylenediamine. Applied Surface Science, 2018, 450, 1-8.	3.1	56
92	Self-assembly of luminescent 12-metal Zn–Ln planar nanoclusters with sensing properties towards nitro explosives. Journal of Materials Chemistry C, 2018, 6, 8513-8521.	2.7	56
93	Recent Advances in Electrocatalysts for Alkaline Hydrogen Oxidation Reaction. Small, 2021, 17, e2100391.	5.2	56
94	Highly efficient oxygen evolution from CoS ₂ /CNT nanocomposites via a one-step electrochemical deposition and dissolution method. Nanoscale, 2017, 9, 6886-6894.	2.8	55
95	Boron Nitride Nanosheet-Veiled Gold Nanoparticles for Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2016, 8, 15630-15636.	4.0	54
96	One-dimensional hexagonal-phase NaYF4: Controlled synthesis, self-assembly, and morphology-dependent up-conversion luminescence properties. CrystEngComm, 2010, 12, 1650.	1.3	53
97	Atomically Dispersed CoN ₄ /B, N-C Nanotubes Boost Oxygen Reduction in Rechargeable Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 4539-4548.	2.5	53
98	Biomimetic Molecule Catalysts to Promote the Conversion of Polysulfides for Advanced Lithium–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2003354.	7.8	53
99	Fabrication horizontal aligned MoO2/single-walled carbon nanotube nanowires for electrochemical supercapacitor. Materials Letters, 2010, 64, 537-540.	1.3	52
100	Ascorbic-acid-assisted growth of high quality M@ZnO: a growth mechanism and kinetics study. Nanoscale, 2013, 5, 11808.	2.8	51
101	The Optimized Interfacial Compatibility of Metal–Organic Frameworks Enables a High-Performance Quasi-Solid Metal Battery. ACS Energy Letters, 2020, 5, 2919-2926.	8.8	51
102	3D CNTs/Grapheneâ€Sâ€Al ₃ Ni ₂ Cathodes for Highâ€Sulfurâ€Loading and Longâ€Life Lithium–Sulfur Batteries. Advanced Science, 2018, 5, 1800026.	5.6	50
103	Wurtzite CulnS2 and CulnxGa1â^'xS2 nanoribbons: synthesis, optical and photoelectrical properties. Nanoscale, 2013, 5, 1638.	2.8	49
104	Surfactantâ€Mediated Morphological Evolution of MnCo Prussian Blue Structures. Small, 2020, 16, e2004614.	5.2	49
105	Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 6245-6256.	5.2	48
106	Simple and Ultrafast Fabrication of Invisible Photonic Prints with Reconfigurable Patterns. Advanced Optical Materials, 2020, 8, 1901541.	3.6	48
107	Mn ⁴⁺ doped (NH ₄) ₂ TiF ₆ and (NH ₄) ₂ SiF ₆ micro-crystal phosphors: synthesis through ion exchange at room temperature and their photoluminescence properties. RSC Advances, 2016, 6, 76251-76258.	1.7	47
108	Moleculeâ€Induced Conformational Change in Boron Nitride Nanosheets with Enhanced Surface Adsorption. Advanced Functional Materials, 2016, 26, 8202-8210.	7.8	47

#	Article	IF	CITATIONS
109	A microporous MOF with open metal sites and Lewis basic sites for selective CO ₂ capture. Dalton Transactions, 2017, 46, 14102-14106.	1.6	47
110	Nanotube â€~crop circles'. Journal of Materials Chemistry, 1999, 9, 1221-1222.	6.7	46
111	Artificial sodium-selective ionic device based on crown-ether crystals with subnanometer pores. Nature Communications, 2021, 12, 5231.	5.8	46
112	Aligned SWCNT-copper oxide array as a nonenzymatic electrochemical probe of glucose. Electrochemistry Communications, 2011, 13, 363-365.	2.3	45
113	Optimized photoluminescence of red phosphor Na ₂ SnF ₆ :Mn ⁴⁺ as red phosphor in the application in "warm―white <scp>LED</scp> s. Journal of the American Ceramic Society, 2017, 100, 2005-2015.	1.9	45
114	One-step template-free synthesis of 3D functionalized flower-like boron nitride nanosheets for NH ₃ and CO ₂ adsorption. Nanoscale, 2018, 10, 10979-10985.	2.8	45
115	Highly Efficient Detection of Homologues and Isomers by the Dynamic Swelling Reflection Spectrum. ACS Applied Materials & Interfaces, 2020, 12, 45174-45183.	4.0	45
116	Self-assembly of colloidal particles into amorphous photonic crystals. Materials Advances, 2021, 2, 6499-6518.	2.6	43
117	Simple and efficient fabrication of multi-stage color-changeable photonic prints as anti-counterfeit labels. Journal of Colloid and Interface Science, 2021, 590, 134-143.	5.0	43
118	Growth mechanism of largescale MoS ₂ monolayer by sulfurization of MoO ₃ film. Materials Research Express, 2016, 3, 075009.	0.8	42
119	Synthesis of wurtzite CulnS2 nanowires by Ag2S-catalyzed growth. CrystEngComm, 2013, 15, 1806.	1.3	41
120	Cuboctahedron-based indium–organic frameworks for gas sorption and selective cation exchange. Chemical Communications, 2016, 52, 7978-7981.	2.2	41
121	Dual-emissions with energy transfer from the phosphor Ca14Al10Zn6O35:Bi3+,Eu3+ for application in agricultural lighting. Journal of Alloys and Compounds, 2017, 724, 735-743.	2.8	41
122	Combination of Digestive Ripening and Seeding Growth As a Generalized Route for Precisely Controlling Size of Monodispersed Noble Monometallic, Shell Thickness of Coreâ^'Shell and Composition of Alloy Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 256-264.	1.5	40
123	Synthesis, characterization and optical properties of flower-like tellurium. CrystEngComm, 2010, 12, 166-171.	1.3	40
124	5-fold Twinned Nanowires and Single Twinned Right Bipyramids of Pd: Utilizing Small Organic Molecules To Tune the Etching Degree of O ₂ /Halides. Chemistry of Materials, 2014, 26, 2453-2459.	3.2	40
125	Tunable Yellow-Red Photoluminescence and Persistent Afterglow in Phosphors Ca ₄ LaO(BO ₃) ₃ :Eu ³⁺ and Ca ₄ EuO(BO ₃) ₃ . Inorganic Chemistry, 2016, 55, 11249-11257.	1.9	40
126	Advanced cathodes for potassium-ion battery. Current Opinion in Electrochemistry, 2019, 18, 24-30.	2.5	40

8

#	Article	IF	CITATIONS
127	Controllable synthesis of carbon nanotubes by changing the Mo content in bimetallic Fe–Mo/MgO catalyst. Materials Chemistry and Physics, 2011, 127, 379-384.	2.0	39
128	Hydrangea-like multi-scale carbon hollow submicron spheres with hierarchical pores for high performance supercapacitor electrodes. Electrochimica Acta, 2015, 176, 207-214.	2.6	39
129	Robust Cage-Based Zinc–Organic Frameworks Derived Dual-Doped Carbon Materials for Supercapacitor. Crystal Growth and Design, 2018, 18, 2358-2364.	1.4	38
130	MOF-templated syntheses of porous Co ₃ O ₄ hollow spheres and micro-flowers for enhanced performance in supercapacitors. CrystEngComm, 2018, 20, 3812-3816.	1.3	38
131	Chameleon-Inspired Brilliant and Sensitive Mechano-Chromic Photonic Skins for Self-Reporting the Strains of Earthworms. ACS Applied Materials & amp; Interfaces, 2022, 14, 11672-11680.	4.0	38
132	The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance. Nanoscale, 2013, 5, 4976.	2.8	37
133	Hand Painting of Noniridescent Structural Multicolor through the Self-Assembly of YOHCO ₃ Colloids and Its Application for Anti-Counterfeiting. Langmuir, 2019, 35, 8428-8435.	1.6	37
134	Three-Dimensional Functionalized Boron Nitride Nanosheets/ZnO Superstructures for CO ₂ Capture. ACS Applied Materials & Interfaces, 2019, 11, 10276-10282.	4.0	37
135	Molecular‣cale Interface Engineering of Metal–Organic Frameworks toward Ion Transport Enables Highâ€Performance Solid Lithium Metal Battery. Advanced Functional Materials, 2020, 30, 2003945.	7.8	36
136	Li ₇ La ₃ Zr ₂ O ₁₂ Ceramic Nanofiber-Incorporated Solid Polymer Electrolytes for Flexible Lithium Batteries. ACS Applied Energy Materials, 2020, 3, 5238-5246.	2.5	36
137	Hydrogen evolution reaction in full pH range on nickel doped tungsten carbide nanocubes as efficient and durable non-precious metal electrocatalysts. International Journal of Hydrogen Energy, 2020, 45, 8695-8702.	3.8	36
138	Identification of the Structures of Superlong Oriented Single-Walled Carbon Nanotube Arrays by Electrodeposition of Metal and Raman Spectroscopy. Journal of the American Chemical Society, 2008, 130, 11860-11861.	6.6	35
139	Ag and N-doped graphene quantum dots co-modified CuBi2O4 submicron rod photocathodes with enhanced photoelectrochemical activity. Applied Surface Science, 2019, 481, 661-668.	3.1	35
140	Constructing Heterogeneous Structure in Metal–Organic Framework-Derived Hierarchical Sulfur Hosts for Capturing Polysulfides and Promoting Conversion Kinetics. ACS Nano, 2021, 15, 18363-18373.	7.3	35
141	Growth of aligned SWNT arrays from water-soluble molecular clusters for nanotube device fabrication. Physical Chemistry Chemical Physics, 2004, 6, 1077.	1.3	34
142	Reduction of Mn4+ to Mn2+ in CaAl12O19 by co-doping charge compensators to obtain tunable photoluminescence. RSC Advances, 2013, 3, 4510.	1.7	34
143	Self-assembly of NIR luminescent 30-metal drum-like and 12-metal rectangular d–f nanoclusters with long-chain Schiff base ligands. Chemical Communications, 2014, 50, 15569-15572.	2.2	34
144	A Facile Route to BaSiF ₆ :Mn ⁴⁺ Phosphor with Intense Red Emission and Its Humidity Stability. Journal of the American Ceramic Society, 2016, 99, 3008-3014.	1.9	34

#	Article	IF	CITATIONS
145	A photoluminescent indium–organic framework with discrete cages and one-dimensional channels for gas adsorption. Chemical Communications, 2016, 52, 9032-9035.	2.2	34
146	A Selfâ€Healing Amalgam Interface in Metal Batteries. Advanced Materials, 2020, 32, e2004798.	11.1	34
147	Abundant Co-Nx sites onto hollow MOF-Derived nitrogen-doped carbon materials for enhanced oxygen reduction. Journal of Power Sources, 2021, 492, 229632.	4.0	34
148	Electrochemical growth of gold nanoparticles on horizontally aligned carbon nanotubes: A new platform for ultrasensitive DNA sensing. Biosensors and Bioelectronics, 2012, 33, 279-283.	5.3	33
149	Epitaxial growth of two-dimensional SnSe ₂ /MoS ₂ misfit heterostructures. Journal of Materials Chemistry C, 2016, 4, 10215-10222.	2.7	33
150	A novel red phosphor of seven-coordinated Mn ⁴⁺ ion-doped tridecafluorodizirconate Na ₅ Zr ₂ F ₁₃ for warm WLEDs. Dalton Transactions, 2018, 47, 5614-5621.	1.6	33
151	Construction of hierarchical Mo2C nanoparticles onto hollow N-doped carbon polyhedrons for efficient hydrogen evolution reaction. Electrochimica Acta, 2019, 321, 134680.	2.6	33
152	Generally transform 3-dimensional In-based metal-organic frameworks into 2-dimensional Co,N-doped carbon nanosheets for Zn-air battery. Journal of Power Sources, 2019, 440, 227158.	4.0	33
153	Structural and Morphological Conversion between Two Co-Based MOFs for Enhanced Water Oxidation. Inorganic Chemistry, 2020, 59, 2701-2710.	1.9	33
154	Rational Design of Embedded CoTe ₂ Nanoparticles in Freestanding N-Doped Multichannel Carbon Fibers for Sodium-Ion Batteries with Ultralong Cycle Lifespan. ACS Applied Materials & Interfaces, 2021, 13, 34134-34144.	4.0	33
155	Copolymerization of Sulfur Chains with Vinyl Functionalized Metalâ^'Organic Framework for Accelerating Redox Kinetics in Lithiumâ^'Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	33
156	Title is missing!. Journal of Nanoparticle Research, 2002, 4, 145-155.	0.8	32
157	A Novel Side-Selective Galvanic Reaction and Synthesis of Hollow Nanoparticles with an Alloy Core. Journal of Physical Chemistry C, 2010, 114, 18073-18080.	1.5	32
158	Nanodotâ€inâ€Nanofiber Structured Carbonâ€Confined Sb ₂ Se ₃ Crystallites for Fast and Durable Sodium Storage. Advanced Functional Materials, 2022, 32, .	7.8	32
159	Amorphous Photonic Structures with Brilliant and Noniridescent Colors via Polymer-Assisted Colloidal Assembly. ACS Omega, 2019, 4, 18771-18779.	1.6	31
160	Thermal conversion of hollow nickel-organic framework into bimetallic FeNi3 alloy embedded in carbon materials as efficient oer electrocatalyst. Electrochimica Acta, 2020, 354, 136716.	2.6	31
161	Ordered structure of interlayer constructed with metal-organic frameworks improves the performance of lithium-sulfur batteries. Nano Research, 2021, 14, 4556-4562.	5.8	31
162	Constructing Active Sites from Atomicâ€Scale Geometrical Engineering in Spinel Oxide Solid Solutions for Efficient and Robust Oxygen Evolution Reaction Electrocatalysts. Advanced Science, 2021, 8, e2101653.	5.6	31

#	Article	IF	CITATIONS
163	Ultrafine ZnSe Encapsulated in Nitrogen-Doped Porous Carbon Nanofibers for Superior Na-Ion Batteries with a Long Lifespan and Low-Temperature Performance. ACS Sustainable Chemistry and Engineering, 2021, 9, 11705-11713.	3.2	31
164	DNAâ€Wrapped Carbon Nanotubes as Sensitive Electrochemical Labels in Controlledâ€Assemblyâ€Mediated Signal Transduction for the Detection of Sequence‧pecific DNA. Small, 2012, 8, 1407-1414.	5.2	30
165	Facile Synthesis of Monodispersed SiO ₂ @Fe ₃ O ₄ Core–Shell Colloids for Printing and Three-Dimensional Coating with Noniridescent Structural Colors. ACS Omega, 2019, 4, 528-534.	1.6	30
166	Bottom-up preparation of hierarchically porous MOF-modified carbon sphere derivatives for efficient oxygen reduction. Nanoscale, 2020, 12, 8785-8792.	2.8	30
167	Hierarchical N-doped CNTs grafted onto MOF-derived porous carbon nanomaterials for efficient oxygen reduction. Journal of Colloid and Interface Science, 2022, 606, 1833-1841.	5.0	30
168	Tuning the electronic structures of cobalt-molybdenum bimetallic carbides to boost the hydrogen oxidation reaction in alkaline medium. Chemical Engineering Journal, 2022, 428, 131206.	6.6	30
169	Thiocyanate-capped CdSe@Zn1-XCdXS gradient alloyed quantum dots for efficient photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 402, 126178.	6.6	29
170	In-MOF-derived ultrathin heteroatom-doped carbon nanosheets for improving oxygen reduction. Nanoscale, 2020, 12, 10019-10025.	2.8	29
171	Rational construction of ultrafine noble metals onto carbon nanoribbons with efficient oxygen reduction in practical alkaline fuel cell. Chemical Engineering Journal, 2021, 424, 130336.	6.6	29
172	Growing carbon nanotubes on patterned submicron-size SiO2 spheres. Carbon, 2003, 41, 2347-2352.	5.4	28
173	Self-Catalytic Growth of Unmodified Gold Nanoparticles as Conductive Bridges Mediated Gap-Electrical Signal Transduction for DNA Hybridization Detection. Analytical Chemistry, 2014, 86, 1178-1185.	3.2	28
174	Invisible photonic prints shown by UV illumination: combining photoluminescent and noniridescent structural colors. Journal of Materials Chemistry C, 2019, 7, 11776-11782.	2.7	28
175	Multiscale optimization of Li-ion diffusion in solid lithium metal batteries <i>via</i> ion conductive metal–organic frameworks. Nanoscale, 2020, 12, 6976-6982.	2.8	28
176	Liquid, Transparent, and Antideformable Thermochromic Photonic Crystals for Displays. Advanced Optical Materials, 2022, 10, .	3.6	28
177	Cation sensing by luminescent high-nuclearity Zn–Eu Schiff base nanoscale complexes: high sensitivity to Ag ⁺ and Cd ²⁺ ions at the ppm level. Dalton Transactions, 2019, 48, 2206-2212.	1.6	27
178	Cube-shaped metal-nitrogen–carbon derived from metal-ammonia complex-impregnated metal-organic framework for highly efficient oxygen reduction reaction. Carbon, 2020, 158, 719-727.	5.4	27
179	Pressure-induced monolithic carbon aerogel from metal-organic framework. Energy Storage Materials, 2020, 28, 393-400.	9.5	27
180	Hydrogen-substituted graphdiyne/graphene as an sp/sp ² hybridized carbon interlayer for lithium–sulfur batteries. Nanoscale, 2021, 13, 3817-3826.	2.8	27

#	Article	IF	CITATIONS
181	Recent advances and perspective on the synthesis and photocatalytic application of metal halide perovskite nanocrystals. Nano Research, 2021, 14, 3773-3794.	5.8	27
182	Filling Octahedral Interstices by Building Geometrical Defects to Construct Active Sites for Boosting the Oxygen Evolution Reaction on NiFe ₂ O ₄ . Advanced Functional Materials, 2022, 32, .	7.8	27
183	Selective Growth of Aligned Carbon Nanotubes on a Silver-Patterned Substrate by the Silver Mirror Reaction. Journal of Physical Chemistry B, 2003, 107, 3455-3458.	1.2	26
184	A self-assembling luminescent lanthanide molecular nanoparticle with potential for liveÂcell imaging. Chemical Science, 2018, 9, 4630-4637.	3.7	26
185	A novel strategy for the synthesis of hollow Pt–Cu tetradecahedrons as an efficient electrocatalyst toward methanol oxidation. CrystEngComm, 2019, 21, 1903-1909.	1.3	26
186	Synthesis and structures of aligned branched carbon nanotubes produced by pyrolysis of iron(II) phthalocyanine. Physica B: Condensed Matter, 2002, 323, 336-338.	1.3	25
187	Superlong-oriented Single-Walled Carbon Nanotube Arrays on Substrate with Low Percentage of Metallic Structure. Journal of Physical Chemistry C, 2009, 113, 6983-6988.	1.5	25
188	Anion dependent self-assembly of a linear hexanuclear Yb(iii) salen complex with enhanced near-infrared (NIR) luminescence properties. Chemical Communications, 2013, 49, 9579.	2.2	25
189	Ag+-assisted heterogeneous growth of concave Pd@Au nanocubes for surface enhanced Raman scattering (SERS). Nano Research, 2017, 10, 3509-3521.	5.8	25
190	Approaching Reactive KFePO ₄ Phase for Potassium Storage by Adopting an Advanced Design Strategy. Batteries and Supercaps, 2020, 3, 450-455.	2.4	25
191	Two Birds with One Stone: Manipulating Colloids Assembled into Amorphous and Ordered Photonic Crystals and Their Combinations for Coding–Decoding. Journal of Physical Chemistry C, 2020, 124, 6328-6336.	1.5	25
192	Single Cobalt Atoms Decorated Nâ€doped Carbon Polyhedron Enabled Dendriteâ€Free Sodium Metal Anode. Small Methods, 2021, 5, e2100833.	4.6	25
193	Highly graphitized N-doped carbon nanosheets from 2-dimensional coordination polymers for efficient metal-air batteries. Carbon, 2022, 188, 135-145.	5.4	25
194	Regulating Coordination Environment in Metal–Organic Frameworks for Adsorption and Redox Conversion of Polysulfides in Lithium–Sulfur Batteries. , 2021, 3, 1684-1694.		25
195	Mn3O4catalyzed growth of polycrystalline Pt nanoparticles and single crystalline Pt nanorods with high index facets. Chemical Communications, 2011, 47, 1009-1011.	2.2	24
196	Solution-based synthesis of wurtzite Cu2ZnSnS4 nanoleaves introduced by α-Cu2S nanocrystals as a catalyst. Nanoscale, 2013, 5, 8114.	2.8	24
197	Anion dependent self-assembly of 56-metal Cd–Ln nanoclusters with enhanced near-infrared luminescence properties. Nanoscale, 2014, 6, 10569-10573.	2.8	24
198	Competitive Effect in The Growth of Pd–Au–Pd Segmental Nanorods. Chemistry of Materials, 2016, 28, 7394-7403.	3.2	24

#	Article	IF	CITATIONS
199	Tailoring defects of CulnS 2 quantum dots for sensitized solar cells. Journal of Alloys and Compounds, 2017, 719, 227-235.	2.8	24
200	Normal-pulse-voltage-assisted <i>in situ</i> fabrication of graphene-wrapped MOF-derived CuO nanoflowers for water oxidation. Chemical Communications, 2020, 56, 8750-8753.	2.2	24
201	Rapid Fabrication of Alcohol Responsive Photonic Prints with Changeable Color Contrasts for Antiâ€Counterfeiting Application. Advanced Materials Interfaces, 2021, 8, 2001905.	1.9	24
202	Visualizing Van der Waals Epitaxial Growth of 2D Heterostructures. Advanced Materials, 2021, 33, e2105079.	11.1	24
203	MOF-derived three-dimensional ordered porous carbon nanomaterial for efficient alkaline zinc-air batteries. Science China Materials, 2022, 65, 1453-1462.	3.5	24
204	Zinc oxide catalyzed growth of single-walled carbon nanotubes. Applied Surface Science, 2010, 256, 2323-2326.	3.1	23
205	Pd embedded in porous carbon (Pd@CMK-3) as an active catalyst for Suzuki reactions: Accelerating mass transfer to enhance the reaction rate. Nano Research, 2014, 7, 1254-1262.	5.8	23
206	Controlling the Diameter of Single-Walled Carbon Nanotubes by Improving the Dispersion of the Uniform Catalyst Nanoparticles on Substrate. Nano-Micro Letters, 2015, 7, 353-359.	14.4	23
207	Superior wide-temperature lithium storage in a porous cobalt vanadate. Nano Research, 2020, 13, 1867-1874.	5.8	23
208	Chitosan hydrogel derived carbon foam with typical transition-metal catalysts for efficient water splitting. Carbon, 2021, 177, 160-170.	5.4	23
209	A novel tunable green-to-red emitting phosphor Ca4LaO(BO3)3:Tb,Eu via energy transfer with high quantum yield. Ceramics International, 2016, 42, 13476-13484.	2.3	22
210	Amorphous MoS2 confined in nitrogen-doped porous carbon for improved electrocatalytic stability toward hydrogen evolution reaction. Nano Research, 2019, 12, 3116-3122.	5.8	22
211	Designing Pd/O co-doped MoS _x for boosting the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15599-15606.	5.2	22
212	High-Fidelity Transfer of Chemical Vapor Deposition Grown 2D Transition Metal Dichalcogenides via Substrate Decoupling and Polymer/Small Molecule Composite. ACS Nano, 2020, 14, 7370-7379.	7.3	22
213	Heteroatom Doping of Molybdenum Carbide Boosts pH-Universal Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 10284-10291.	3.2	22
214	Dual active sites fabricated through atomic layer deposition of TiO ₂ on MoS ₂ nanosheet arrays for highly efficient electroreduction of CO ₂ to ethanol. Journal of Materials Chemistry A, 2021, 9, 6790-6796.	5.2	22
215	An ultralight electroconductive metal-organic framework membrane for multistep catalytic conversion and molecular sieving in lithium-sulfur batteries. Energy Storage Materials, 2022, 51, 882-889.	9.5	22
216	Aligned carbon nanotubes patterned photolithographically by silver. Applied Physics Letters, 2003, 82, 796-798.	1.5	21

#	Article	IF	CITATIONS
217	Solution-based synthesis of quaternary Cu–In–Zn–S nanobelts with tunable composition and band gap. Chemical Communications, 2011, 47, 5256.	2.2	21
218	BiVO ₄ hollow microplates: controlled synthesis and enhanced photocatalytic activity achieved through one-step boron doping and Co(OH) ₂ loading. CrystEngComm, 2017, 19, 6305-6313.	1.3	21
219	Construction of luminescent high-nuclearity Zn–Ln rectangular nanoclusters with flexible long-chain Schiff base ligands. Dalton Transactions, 2018, 47, 53-57.	1.6	21
220	Synthesis of a MoS <i>_x</i> –O–PtO <i>_x</i> Electrocatalyst with High Hydrogen Evolution Activity Using a Sacrificial Counterâ€Electrode. Advanced Science, 2019, 6, 1801663.	5.6	21
221	A Long ycling Aqueous Zincâ€lon Pouch Cell: NASICONâ€Type Material and Surface Modification. Chemistry - an Asian Journal, 2020, 15, 1430-1435.	1.7	21
222	Dual-Type Carbon Confinement Strategy: Improving the Stability of CoTe ₂ Nanocrystals for Sodium-Ion Batteries with a Long Lifespan. ACS Applied Materials & Interfaces, 2022, 14, 6801-6809.	4.0	21
223	One-pot synthesis and magnetic, electrical properties of single-crystalline α-MnS nanobelts. Chemical Physics Letters, 2008, 462, 96-99.	1.2	20
224	Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage. Journal of Solid State Electrochemistry, 2017, 21, 1165-1174.	1.2	20
225	A new coding-decoding system through combining near-infrared photonic crystals and their spatial reflection spectra. Journal of Materials Chemistry C, 2021, 9, 4466-4473.	2.7	20
226	Silicaâ€Templated Metal Organic Frameworkâ€Derived Hierarchically Porous Cobalt Oxide in Nitrogenâ€Doped Carbon Nanomaterials for Electrochemical Glucose Sensing. ChemElectroChem, 2021, 8, 812-818.	1.7	20
227	Controlled fabrication of aligned carbon nanotube patterns. Physica B: Condensed Matter, 2002, 323, 333-335.	1.3	19
228	Controlled synthesis of Pt nanoparticles via seeding growth and their shape-dependent catalytic activity. Journal of Colloid and Interface Science, 2010, 352, 379-385.	5.0	19
229	Ag2S-catalyzed growth of quaternary AgInZn7S9 semiconductor nanowires in solution. CrystEngComm, 2011, 13, 3515.	1.3	19
230	Color tunable phosphor CaMoO4:Eu3+,Li+ via energy transfer of MoO42â^–Eu3+ dependent on morphology and doping concentration. Materials Research Bulletin, 2013, 48, 1034-1039.	2.7	19
231	Luminescence properties and thermal stability of a red phosphor ZnSiF6·6H2O:Mn4+ synthesized by the one-step hydrothermal method. Journal of Luminescence, 2014, 152, 214-217.	1.5	19
232	Switchable sensitizers stepwise lighting up lanthanide emissions. Scientific Reports, 2015, 5, 9335.	1.6	19
233	Co3O4-anchored MWCNTs network derived from metal-organic frameworks as efficient OER electrocatalysts. Materials Letters, 2019, 248, 181-184.	1.3	19
234	Doping engineering on carbons as electrocatalysts for oxygen reduction reaction. Fundamental Research, 2021, 1, 807-823.	1.6	19

#	Article	IF	CITATIONS
235	Large-scale synthesis of feather-like single-crystal Te via a biphasic interfacial reaction route. CrystEngComm, 2010, 12, 3852.	1.3	18
236	Crystal structure, morphology and sorption behaviour of porous indium-tetracarboxylate framework materials. CrystEngComm, 2015, 17, 8512-8518.	1.3	18
237	Nanocavity-in-Multiple Nanogap Plasmonic Coupling Effects from Vertical Sandwich-Like Au@Al ₂ O ₃ @Au Arrays for Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2018, 10, 8317-8323.	4.0	18
238	Three-dimensional sp ² carbon networks prepared by ultrahigh temperature treatment for ultrafast lithium–sulfur batteries. Nanoscale, 2018, 10, 10999-11005.	2.8	18
239	Unraveling the role of ion-solvent chemistry in stabilizing small-molecule organic cathode for potassium-ion batteries. Energy Storage Materials, 2021, 43, 172-181.	9.5	18
240	Nano-TiO ₂ : An Efficient and Reusable Heterogeneous Catalyst for Ring Opening of Epoxides Under Solvent-Free Conditions. Synthetic Communications, 2012, 42, 2440-2452.	1.1	17
241	Two-Dimensional Van der Waals Heterostructures for Synergistically Improved Surface-Enhanced Raman Spectroscopy. ACS Applied Materials & Interfaces, 2020, 12, 21985-21991.	4.0	17
242	Bimetallic AgNi nanoparticles anchored onto MOF-derived nitrogen-doped carbon nanostrips for efficient hydrogen evolution. Green Energy and Environment, 2023, 8, 258-266.	4.7	17
243	Morphologically Controlled Metal–Organic Framework-Derived FeNi Oxides for Efficient Water Oxidation. Inorganic Chemistry, 2022, 61, 8909-8919.	1.9	17
244	Two Cd(II) and Ni(II) complexes constructed with dicyanamide and picolinate ligands. Inorganica Chimica Acta, 2009, 362, 4926-4930.	1.2	16
245	Carbon nanotube growth from alkali metal salt nanoparticles. Carbon, 2014, 80, 490-495.	5.4	16
246	Universal Precise Growth of 2D Transition-Metal Dichalcogenides in Vertical Direction. ACS Applied Materials & Interfaces, 2020, 12, 35337-35344.	4.0	16
247	Highly Efficient Fabricating Amorphous Photonic Crystals Using Less Polar Solvents and the Wettabilityâ€Based Information Storage and Recognition. Particle and Particle Systems Characterization, 2020, 37, 2000043.	1.2	16
248	Differentiated Oxygen Evolution Behavior in MOF-Derived Oxide Nanomaterials Induced by Phase Transition. ACS Applied Materials & amp; Interfaces, 2021, 13, 55454-55462.	4.0	16
249	Redistribution of electronic density in channels of metal–Organic frameworks for high-performance quasi-solid lithium metal batteries. Energy Storage Materials, 2022, 47, 271-278.	9.5	16
250	Mo/MgO from avalanche-like reduction of MgMoO4 for high efficient growth of multi-walled carbon nanotubes by chemical vapor deposition. Materials Chemistry and Physics, 2009, 114, 173-178.	2.0	15
251	Enhanced photoluminescence and phosphorescence properties of green phosphor Zn ₂ GeO ₄ :Mn ²⁺ via composition modification with GeO ₂ and MgF ₂ . Dalton Transactions, 2016, 45, 9506-9512.	1.6	15
252	Carbon-nanoparticle-assisted growth of high quality bilayer WS2 by atmospheric pressure chemical vapor deposition. Nano Research, 2019, 12, 2802-2807.	5.8	15

#	Article	IF	CITATIONS
253	Controlled fractal growth of transition metal dichalcogenides. Nanoscale, 2019, 11, 17065-17072.	2.8	15
254	Abundant nanotube coated ordered macroporous carbon matrix with enhanced electrocatalytic activity. Journal of Power Sources, 2020, 467, 228302.	4.0	15
255	Ultrasmall Mo2C in N-doped carbon material from bimetallic ZnMo-MOF for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 2182-2190.	3.8	15
256	Noniridescent structural color from enhanced electromagnetic resonances of particle aggregations and its applications for reconfigurable patterns. Journal of Colloid and Interface Science, 2021, 604, 178-187.	5.0	15
257	Electrochemical evolution of cobalt-carboxylate framework for efficient water oxidation. Journal of Power Sources, 2021, 499, 229947.	4.0	15
258	Tuning anion chemistry enables high-voltage and stable potassium-based tellurium-graphite batteries. Nano Energy, 2022, 92, 106744.	8.2	15
259	Photo-Luminescent Photonic Crystals for Anti-Counterfeiting. ACS Omega, 2022, 7, 7320-7326.	1.6	15
260	Mechanoâ€Chromic Photonic Crystals with Substrateâ€independent Brilliant Colors for Visual Sensing and Antiâ€Counterfeiting Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	15
261	Three-dimensional porous boron nitride with enriched defects and free radicals enables high photocatalytic activity for hydrogen evolution. Chemical Engineering Journal, 2022, 446, 137026.	6.6	15
262	Continuous synthesis of carbon nanotubes using a metal-free catalyst by CVD. Materials Chemistry and Physics, 2012, 133, 95-102.	2.0	14
263	Self-assembly of high-nuclearity lanthanide-based nanoclusters for potential bioimaging applications. Nanoscale, 2016, 8, 11123-11129.	2.8	14
264	Size control of SBA-15 by tuning the stirring speed for the formation of CMK-3 with distinct adsorption performance. Nano Research, 2016, 9, 2294-2302.	5.8	14
265	High-performance supercapacitors based on reduced graphene oxide -wrapped carbon nanoflower with efficient transport pathway of electrons and electrolyte ions. Electrochimica Acta, 2019, 306, 549-557.	2.6	14
266	Highly efficient utilization of light and charge separation over a hematite photoanode achieved through a noncontact photonic crystal film for photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 2020, 22, 20202-20211.	1.3	14
267	Growth of carbon nanotubes from titanium dioxide nanoparticles. Applied Surface Science, 2012, 258, 8019-8025.	3.1	13
268	Boron Nitride Nanosheets Improve Sensitivity and Reusability of Surfaceâ€Enhanced Raman Spectroscopy. Angewandte Chemie, 2016, 128, 8545-8549.	1.6	13
269	Neuron-Inspired Interpenetrative Network Composed of Cobalt–Phosphorus-Derived Nanoparticles Embedded within Porous Carbon Nanotubes for Efficient Hydrogen Production. ACS Applied Materials & Interfaces, 2016, 8, 17284-17291.	4.0	13
270	Zinc dopant inspired enhancement of electron injection for CuInS ₂ quantum dot-sensitized solar cells. RSC Advances, 2017, 7, 39443-39451.	1.7	13

#	Article	IF	CITATIONS
271	Applying AuNPs/SWCNT to fabricate electrical nanogap device for DNA hybridization detection. Carbon, 2020, 157, 40-46.	5.4	13
272	Overall water splitting on Ni0.19WO4 nanowires as highly efficient and durable bifunctional non-precious metal electrocatalysts. Electrochimica Acta, 2020, 333, 135554.	2.6	13
273	Growth of wurtzite CuGaS2 nanoribbons and their photoelectrical properties. Journal of Alloys and Compounds, 2013, 567, 127-133.	2.8	12
274	Rapid synthesis of hollow PtPdCu trimetallic octahedrons at room temperature for oxygen reduction reactions in acid media. CrystEngComm, 2020, 22, 1586-1592.	1.3	12
275	Screwdriver-like Pd-Ag heterostructures formed via selective deposition of Ag on Pd nanowires as efficient photocatalysts for solvent-free aerobic oxidation of toluene. Nano Research, 2020, 13, 646-652.	5.8	12
276	Refractiveâ€Indexâ€Matchingâ€Based Encryption of Photonic Crystal Prints with Multistage and Reconfigurable Information. Advanced Materials Interfaces, 2021, 8, 2100789.	1.9	12
277	Anion dependent self-assembly of sandwich 13-metal Ni–Ln nanoclusters with a long-chain Schiff base ligand. Dalton Transactions, 2017, 46, 1748-1752.	1.6	11
278	Dualâ€Modal Invisible Photonic Crystal Prints from Photo/Water Responsive Photonic Crystals. Advanced Photonics Research, 2021, 2, 2000197.	1.7	11
279	Phthalocyanine-induced iron active species in metal–organic framework-derived porous carbon for efficient alkaline zinc–air batteries. Inorganic Chemistry Frontiers, 2022, 9, 2557-2567.	3.0	11
280	Variable HOF-derived carbon-coated cobalt phosphide for electrocatalytic oxygen evolution. Carbon, 2022, 196, 457-465.	5.4	11
281	3D Carbon Nanotube Architectures on Glass Substrate by Stamp Printing Bimetallic Feâ^'Pt/Polymer Catalyst. Journal of Physical Chemistry B, 2003, 107, 8285-8288.	1.2	10
282	Self-assembled Three-dimensional Hierarchical BiVO4 Microspheres from Nanoplates: Malic Acid-assisted Hydrothermal Synthesis and Photocatalytic Activities. Chemistry Letters, 2009, 38, 962-963.	0.7	10
283	The alloying effect and AgCl-directing growth for synthesizing a trimetallic nanoring with improved SERS. Nanoscale, 2015, 7, 20414-20425.	2.8	10
284	A microporous europium–organic framework anchored with open –COOH groups for selective cation sensing. CrystEngComm, 2016, 18, 7955-7958.	1.3	10
285	First NIR luminescent polymeric high-nuclearity Cd–Ln nanoclusters from a long-chain Schiff base ligand. Journal of Materials Chemistry C, 2016, 4, 1589-1593.	2.7	10
286	Ceria/cobalt borate hybrids as efficient electrocatalysts for water oxidation under neutral conditions. Nanoscale Advances, 2019, 1, 3686-3692.	2.2	10
287	Methylation-Induced Reversible Metallic-Semiconducting Transition of Single-Walled Carbon Nanotube Arrays for High-Performance Field-Effect Transistors. Nano Letters, 2020, 20, 496-501.	4.5	10
288	Design of thiol–lithium ion interaction in metal–organic framework for high-performance quasi-solid lithium metal batteries. Dalton Transactions, 2021, 50, 2928-2935.	1.6	10

#	Article	IF	CITATIONS
289	Photonic Crystals with Tunable Lattice Structures Based on Anisotropic Metal–Organic Framework Particles and Their Application in Anticounterfeiting. Advanced Photonics Research, 2022, 3, .	1.7	10
290	Amorphous Telluriumâ€Embedded Hierarchical Porous Carbon Nanofibers as Highâ€Rate and Longâ€Life Electrodes for Potassiumâ€Ion Batteries. Small, 2022, 18, .	5.2	10
291	Controllable 3D architectures of aligned carbon nanotube arrays by multi-step processes. Chemical Physics Letters, 2003, 374, 157-163.	1.2	9
292	Quality of horizontally aligned single-walled carbon nanotubes: Is methane as carbon source better than ethanol?. Applied Surface Science, 2010, 256, 3357-3360.	3.1	9
293	Growth and Formation Mechanism of Branched Carbon Nanotubes by Pyrolysis of Iron(II) Phthalocyanine. Nano-Micro Letters, 2013, 5, 124-128.	14.4	9
294	Lithium-Sulfur Batteries: A Lightweight TiO2/Graphene Interlayer, Applied as a Highly Effective Polysulfide Absorbent for Fast, Long-Life Lithium-Sulfur Batteries (Adv. Mater. 18/2015). Advanced Materials, 2015, 27, 2890-2890.	11.1	9
295	Enhancement of the luminescence properties of high-nuclearity Cd–Ln (Ln = Eu and Nd) nanoclusters by the introduction of more energy transfer donors. Nanoscale, 2017, 9, 517-521.	2.8	9
296	Selective adsorption behaviour of carbon dioxide in OH-functionalized metal–organic framework materials. CrystEngComm, 2017, 19, 5346-5350.	1.3	9
297	Crystalline-phase-dependent catalytic performance of MnO2 for aerobic oxidation reactions. Science China Materials, 2017, 60, 1196-1204.	3.5	9
298	Hybrid Cathodes Composed of K3V2(PO4)3 and Carbon Materials with Boosted Charge Transfer for K-Ion Batteries. Surfaces, 2020, 3, 1-10.	1.0	9
299	Nano germanium incorporated thin graphite nanoplatelets: A novel germanium based lithium-ion battery anode with enhanced electrochemical performance. Electrochimica Acta, 2021, 391, 139001.	2.6	9
300	2D Ultrathin pâ€ŧype ZnTe with High Environmental Stability. Advanced Electronic Materials, 2022, 8, .	2.6	9
301	Catalyst-free growth of oriented single-walled carbon nanotubes on mica by ethanol chemical vapor deposition. Materials Letters, 2009, 63, 721-723.	1.3	8
302	Colloidal synthesis of CuGaS x Se 2 â^' x nanoribbons mediated by Cu 1.75 (SSe) nanocrystals as catalysts. Journal of Alloys and Compounds, 2014, 617, 961-967.	2.8	8
303	Direct fabrication of metal-free hollow graphene balls with a self-supporting structure as efficient cathode catalysts of fuel cell. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	8
304	Sulfurâ€Induced Growth of Coordination Polymer Derivedâ€Straight Carbon Nanotubes on Carbon Nanofiber Network for Znâ€Air Batteries. Chemistry - A European Journal, 2021, 27, 7704-7711.	1.7	8
305	Anisotropic lanthanide-based nano-clusters for imaging applications. Faraday Discussions, 2016, 191, 465-479.	1.6	7
306	Synthesis, crystal structures and NIR luminescence properties of binuclear lanthanide Schiff Base complexes. Inorganic Chemistry Communication, 2017, 85, 52-55.	1.8	7

#	Article	IF	CITATIONS
307	Highly efficient zinc finger peptide detection with ZIF-8-modified micropipets. Chemical Communications, 2020, 56, 10855-10858.	2.2	7
308	Multiple-Dimensionally Controllable Nucleation Sites of Two-Dimensional WS ₂ /Bi ₂ Se ₃ Heterojunctions Based on Vapor Growth. ACS Applied Materials & Interfaces, 2021, 13, 15518-15524.	4.0	7
309	Photoelectrocatalytic oxidation of GMP on an ITO electrode modified with clay/[Ru(phen)2(dC18bpy)]2+ hybrid film. Science in China Series B: Chemistry, 2009, 52, 318-324.	0.8	6
310	Tuning Ion Complexing To Rapidly Prepare Hollow Ag–Pt Nanowires with High Activity toward the Methanol Oxidization Reaction. Chemistry - A European Journal, 2018, 24, 17345-17355.	1.7	6
311	Influence of Transmembrane Ionic Current Based on PNIPAM-Modified Nanochannels. Journal of Physical Chemistry C, 2019, 123, 12500-12504.	1.5	6
312	In situ growth of ZIF-8 into solid-state nanochannels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 260-264.	2.3	6
313	Monolayer-ReS2 field effect transistor using monolayer-graphene as electrodes. Physica B: Condensed Matter, 2019, 554, 35-39.	1.3	6
314	A novel strategy to design a multilayer functionalized Cu ₂ S thin film counter electrode with enhanced catalytic activity and stability for quantum dot sensitized solar cells. Nanoscale Advances, 2020, 2, 833-843.	2.2	6
315	Boron nitride nanosheets for surface-enhanced Raman spectroscopy. Materials Today Physics, 2022, 22, 100575.	2.9	6
316	Solvent-free synthesis of highly porous boron carbon nitride for effective water cleaning. Ceramics International, 2022, 48, 27658-27663.	2.3	6
317	SYNTHESIZING A WELL-ALIGNED CARBON NANOTUBE FOREST WITH HIGH QUALITY VIA THE NEBULIZED SPRAY PYROLYSIS METHOD BY OPTIMIZING ULTRASONIC FREQUENCY. Nano, 2011, 06, 343-348.	0.5	5
318	Controlled synthesis of Eu3+-doped La2O2S nanophosphors by refluxing method. Journal of Experimental Nanoscience, 2013, 8, 434-441.	1.3	5
319	Antimony doped cadmium selenium nanobelts with enhanced electrical and optoelectrical properties. Applied Surface Science, 2014, 307, 608-614.	3.1	5
320	Evolution from small sized Au nanoparticles to hollow Pt/Au nanostructures with Pt nanorods and a mechanistic study. RSC Advances, 2015, 5, 103797-103802.	1.7	5
321	Construction and Luminescence Properties of 4f and d-4f Clusters with Salen-Type Schiff Base Ligands. Structure and Bonding, 2016, , 155-187.	1.0	5
322	Confining Sulfur in Nâ€Doped Hollow Porous Carbon Spheres for Improved Lithiumâ€Sulfur Batteries. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 629-634.	0.6	5
323	Constructing a hierarchical Sb@C nanoarchitectures as free-standing anode for high-performance lithium-ion batteries. Materials Letters, 2021, 303, 130563.	1.3	5
324	Metal–organic frameworks with mixed-anion secondary building units as efficient photocatalysts for hydrogen generation. Journal of Catalysis, 2022, 407, 10-18.	3.1	5

#	Article	IF	CITATIONS
325	Kinetics of the thermal decomposition of diethyldithiocarbamato tellurium (IV). Thermochimica Acta, 2006, 451, 94-98.	1.2	4
326	Eu(TTA)3phen Nanobelts with Enhanced Luminescent Properties Prepared by Self-assembly. Chemistry Letters, 2010, 39, 886-887.	0.7	4
327	Growth of Singleâ€Walled Carbon Nanotubes from Tellurium Nanoparticles by Alcohol CVD. Chemical Vapor Deposition, 2010, 16, 136-142.	1.4	4
328	The imaging mechanism of single-walled carbon nanotubes on Si/SiO2 wafer in scanning electron microscopy. Journal of Microscopy, 2011, 241, 188-194.	0.8	4
329	Synthesis of GeSe ₂ Nanobelts Using Thermal Evaporation and Their Photoelectrical Properties. Journal of Nanomaterials, 2014, 2014, 1-9.	1.5	4
330	Cu1.94S-Assisted Growth of Wurtzite CuInS2 Nanoleaves by In Situ Copper Sulfidation. Nanoscale Research Letters, 2015, 10, 996.	3.1	4
331	Influence of Au Nanoparticle Shape on Au@Cu2O Heterostructures. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	4
332	The synthesis of hollow CuInS2 microspheres with hierarchical structures. Materials Chemistry and Physics, 2015, 149-150, 743-750.	2.0	4
333	Growth of atomically thin MoS2 flakes on high- \hat{I}^{e} substrates by chemical vapor deposition. Journal of Materials Science, 2018, 53, 4262-4273.	1.7	4
334	Reversible electron doping in monolayer WS ₂ via a chemical strategy. 2D Materials, 2019, 6, 025003.	2.0	4
335	Laser-induced phenylation reaction to prepare semiconducting single-walled carbon nanotube arrays. Chemical Communications, 2020, 56, 14259-14262.	2.2	4
336	Bimetallic carbides of Ni6W6C as efficient non-precious metal electrocatalysts for hydrogen oxidation reaction in alkaline medium. Materials Letters, 2022, 324, 132749.	1.3	4
337	CVD growth of high density SWNTs network on surface using iron phosphide nanorods as catalyst precursor. Chemical Physics Letters, 2008, 464, 49-53.	1.2	3
338	Fabricating two-dimensional nanostructured tellurium thin films via pyrolyzing a single-source molecular precursor. Thin Solid Films, 2010, 518, 4215-4220.	0.8	3
339	Electrical and optoelectrical modification of cadmium sulfide nanobelts by low-energy electron beam irradiation. Nanotechnology, 2016, 27, 395704.	1.3	3
340	Rational selection of halide ions for synthesizing highly active Au@Pd nanobipyramids. RSC Advances, 2017, 7, 36867-36875.	1.7	3
341	Vertically aligned Î ³ -AlOOH nanosheets on Al foils as flexible and reusable substrates for NH3 adsorption. Frontiers of Physics, 2018, 13, 1.	2.4	3
342	Lithium-Ion Batteries: Nanostructured Li3 V2 (PO4)3 Cathodes (Small 21/2018). Small, 2018, 14, 1870095.	5.2	3

#	Article	IF	CITATIONS
343	Electron Transport Properties of WS2 Field-Effect Transistors Modulated by Electron Beam Irradiation Under Gate Voltage. IEEE Electron Device Letters, 2019, 40, 1542-1545.	2.2	3
344	Anion Dependent Self-Assembly of Polynuclear Cd-Ln Schiff Base Nanoclusters: NIR Luminescent Sensing of Nitro Explosives. Frontiers in Chemistry, 2019, 7, 139.	1.8	3
345	A liquid cathode/anode based solid-state lithium-sulfur battery. Electrochimica Acta, 2022, 421, 140456.	2.6	3
346	Growth of single-walled carbon nanotube arrays from samarium on substrates. Materials Letters, 2009, 63, 1393-1396.	1.3	2
347	Joule heat welding using dualâ€nanomanipulators inside scanning electron microscope: a method applied for manipulation and device fabrication of oneâ€dimensional nanomaterials. Micro and Nano Letters, 2013, 8, 532-535.	0.6	2
348	Innenrücktitelbild: Boron Nitride Nanosheets Improve Sensitivity and Reusability of Surfaceâ€Enhanced Raman Spectroscopy (Angew. Chem. 29/2016). Angewandte Chemie, 2016, 128, 8597-8597.	1.6	2
349	Lithium-Sulfur Batteries: 3D CNTs/Graphene-S-Al3 Ni2 Cathodes for High-Sulfur-Loading and Long-Life Lithium-Sulfur Batteries (Adv. Sci. 7/2018). Advanced Science, 2018, 5, 1870043.	5.6	2
350	A regulatable gap-electrical DNA sensor based on gold nanorods and single-walled carbon nanotubes. Microchemical Journal, 2022, 179, 107415.	2.3	2
351	Inkjet printing of palladium source and drain electrodes on individual single-wall carbon nanotubes to fabricate field effect transistors. RSC Advances, 2013, 3, 23658.	1.7	1
352	Enhanced electrical and optoelectrical properties of cadmium selenide nanobelts by chlorine doping. Micro and Nano Letters, 2014, 9, 55-59.	0.6	1
353	2D Nanomaterials: Moleculeâ€Induced Conformational Change in Boron Nitride Nanosheets with Enhanced Surface Adsorption (Adv. Funct. Mater. 45/2016). Advanced Functional Materials, 2016, 26, 8356-8356.	7.8	1
354	Kinematic molecular manufacturing machines. Coordination Chemistry Reviews, 2016, 329, 163-190.	9.5	1
355	Metal Chalcogenides: Metal Chalcogenides: Paving the Way for Highâ€Performance Sodium/Potassiumâ€Ion Batteries (Small Methods 1/2020). Small Methods, 2020, 4, 2070002.	4.6	1
356	Growth and Formation Mechanism of Branched Carbon Nanotubes by Pyrolysis of Iron(II) Phthalocyanine. Nano-Micro Letters, 2013, 5, 124.	14.4	1
357	Tuning the current rectification behavior of Rh ₂ -based molecular junctions by varying their supramolecular structures. Nanoscale, 2021, 13, 19200-19209.	2.8	1
358	Microscopic and Macroscopic Structures of Carbon Nanotubes Produced by Pyrolysis of Iron Phthalocyanine. ChemInform, 2003, 34, no.	0.1	0
359	Electrocatalytic oxidation of GMP on an ITO electrode modified by the photodeposition of Pd nanoparticles onto a monolayer TiO2 nanosheets/[Ru(phen)2(dC18bpy)]2+ hybrid film. Science China Chemistry, 2011, 54, 483-489.	4.2	0
360	Growth of Single-Walled Carbon Nanotubes from Well-Defined POSS Nanoclusters Structure. Nano, 2015, 10, 1550004.	0.5	0

#	Article	IF	CITATIONS
361	Metal–Organic Frameworks: Molecularâ€Scale Interface Engineering of Metal–Organic Frameworks toward Ion Transport Enables Highâ€Performance Solid Lithium Metal Battery (Adv. Funct. Mater.) Tj ETQq1 1	0.78 4.8 14	rgBT0/Overlock
362	Refractiveâ€Indexâ€Matchingâ€Based Encryption of Photonic Crystal Prints with Multistage and Reconfigurable Information (Adv. Mater. Interfaces 20/2021). Advanced Materials Interfaces, 2021, 8, 2170112.	1.9	0
363	Direct Growth of Single Walled Carbon Nanotubes on Flat Substrates for Nanoscale Electronic Applications. Nanoscience and Technology, 2005, , 113-132.	1.5	Ο
364	CuO-nanoparticle-induced controlled synthesis of various Pt nanostructures and their shape-dependent catalytic properties in oxidisation of methanol. Micro and Nano Letters, 2012, 7, 1015-1018.	0.6	0
365	Copolymerization of Sulfur Chains with Vinyl Functionalized Metalâ^'Organic Framework for Accelerating Redox Kinetics in Lithiumâ^'Sulfur Batteries (Adv. Energy Mater. 21/2022). Advanced Energy Materials, 2022, 12, .	10.2	0