
Saeed Ahmed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579164/publications.pdf Version: 2024-02-01

SAFED AHMED

#	Article	IF	CITATIONS
1	Concentrations, pollution indices and health risk assessment of heavy metals in road dust from two urbanized cities of Pakistan: Comparing two sampling methods for heavy metals concentration. Sustainable Cities and Society, 2020, 53, 101959.	5.1	70
2	Phosphate removal from river water using a highly efficient magnetically recyclable Fe3O4/La(OH)3 nanocomposite. Chemosphere, 2020, 261, 128118.	4.2	43
3	Hexamethylene tetramine-assisted hydrothermal synthesis of porous magnesium oxide for high-efficiency removal of phosphate in aqueous solution. Journal of Environmental Chemical Engineering, 2017, 5, 4649-4655.	3.3	39
4	Recent Progress on Adsorption Materials for Phosphate Removal. Recent Patents on Nanotechnology, 2019, 13, 3-16.	0.7	39
5	Ethylene glycol-assisted fabrication and superb adsorption capacity of hierarchical porous flower-like magnesium oxide microspheres for phosphate. Inorganic Chemistry Frontiers, 2019, 6, 1952-1961.	3.0	37
6	Visible-light-driven ZnO/ZnS/MnO2 ternary nanocomposite catalyst: synthesis, characterization and photocatalytic degradation of methylene blue. Applied Nanoscience (Switzerland), 2021, 11, 2361-2370.	1.6	35
7	Solvent assisted synthesis of hierarchical magnesium oxide flowers for adsorption of phosphate and methyl orange: Kinetic, isotherm, thermodynamic and removal mechanism. Surfaces and Interfaces, 2021, 23, 100953.	1.5	30
8	N-doped reduced graphene oxide decorated with Fe3O4 composite: Stable and magnetically separable adsorbent solution for high performance phosphate removal. Journal of Environmental Chemical Engineering, 2019, 7, 103137.	3.3	29
9	Superb removal capacity of hierarchically porous magnesium oxide for phosphate and methyl orange. Environmental Science and Pollution Research, 2018, 25, 24907-24916.	2.7	26
10	Fabrication and corrosion inhibition behavior of hierarchical Al-Cr co-doped magnesium ferrites nanomaterial for steel. Surface and Coatings Technology, 2021, 405, 126687.	2.2	21
11	Effective removal of methylene blue using nanoscale manganese oxide rods and spheres derived from different precursors of manganese. Journal of Physics and Chemistry of Solids, 2021, 155, 110121.	1.9	19
12	Development of CuO/CuS/MnO2 ternary nanocomposite for visible light-inducedÂphotocatalytic degradation of methylene blue. Nanotechnology for Environmental Engineering, 2023, 8, 63-73.	2.0	18
13	Carbon fiber paper@MgO films: in situ fabrication and high-performance removal capacity for phosphate anions. Environmental Science and Pollution Research, 2018, 25, 34788-34792.	2.7	15
14	Scaled-up development of magnetically recyclable Fe3O4/La(OH)3 composite for river water phosphate removal: From bench-scale to pilot-scale study. Science of the Total Environment, 2021, 791, 148281.	3.9	15
15	Development of hexagonal nanoscale nickel ferrite for the removal of organic pollutant via Photo-Fenton type catalytic oxidation process. Environmental Nanotechnology, Monitoring and Management, 2020, 14, 100321.	1.7	15
16	Synthesis of 2D Magnesium Oxide Nanosheets: A Potential Material for Phosphate Removal. Global Challenges, 2018, 2, 1800056.	1.8	13
17	Arsenic contamination, induced symptoms, and health risk assessment in groundwater of Lahore, Pakistan. Environmental Science and Pollution Research, 2022, 29, 49796-49807.	2.7	11
18	CTAB-assisted fabrication of hierarchical flower-like magnesium oxide adsorbent for enhanced removal performance towards phosphate. Journal of Magnesium and Alloys, 2023, 11, 3231-3240.	5.5	9

#	Article	IF	CITATIONS
19	Visible-light-driven zirconium oxide/cadmium sulfide nanocomposite for degradation of textile dyes. International Journal of Environmental Science and Technology, 2022, 19, 4037-4046.	1.8	6
20	Development of magnesium oxide@carbon fiber paper composite film for the removal of methyl orange from aqueous phase. Nanotechnology for Environmental Engineering, 2022, 7, 49-56.	2.0	2