Ibo van de Poel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579071/publications.pdf

Version: 2024-02-01

159585 197818 2,961 86 30 49 citations h-index g-index papers 91 91 91 2095 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Engineering and the Problem of Moral Overload. Science and Engineering Ethics, 2012, 18, 143-155.	2.9	140
2	Translating Values into Design Requirements. Philosophy of Engineering and Technology, 2013, , 253-266.	0.3	135
3	The Problem of Many Hands: Climate Change as an Example. Science and Engineering Ethics, 2012, 18, 49-67.	2.9	108
4	LifeTime and improving European healthcare through cell-based interceptive medicine. Nature, 2020, 587, 377-386.	27.8	108
5	On the Role of Outsiders in Technical Development. Technology Analysis and Strategic Management, 2000, 12, 383-397.	3.5	107
6	Sunscreens with Titanium Dioxide (TiO2) Nano-Particles: A Societal Experiment. NanoEthics, 2010, 4, 103-113.	0.8	106
7	Treating socio-technical systems as engineering systems: some conceptual problems. Systems Research and Behavioral Science, 2006, 23, 803-814.	1.6	104
8	Modelling infrastructures as socio-technical systems. International Journal of Critical Infrastructures, 2006, 2, 133.	0.2	100
9	The transformation of technological regimes. Research Policy, 2003, 32, 49-68.	6.4	95
10	An Ethical Framework for Evaluating Experimental Technology. Science and Engineering Ethics, 2016, 22, 667-686.	2.9	93
11	Methodological problems in QFD and directions for future development. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2007, 18, 21-36.	2.1	90
12	Embedding Values in Artificial Intelligence (AI) Systems. Minds and Machines, 2020, 30, 385-409.	4.8	86
13	Safe-by-Design: from Safety to Responsibility. NanoEthics, 2017, 11, 297-306.	0.8	82
14	Values in Engineering Design. , 2009, , 973-1006.		80
15	Company Strategies for Responsible Research and Innovation (RRI): A Conceptual Model. Sustainability, 2017, 9, 2045.	3.2	77
16	The Relation Between Forward-Looking and Backward-Looking Responsibility. Library of Ethics and Applied Philosophy, $2011, 37-52$.	0.2	77
17	Mapping value sensitive design onto Al for social good principles. Al and Ethics, 2021, 1, 283-296.	6.8	7 5
18	Design for value change. Ethics and Information Technology, 2021, 23, 27-31.	3.8	70

#	Article	IF	CITATIONS
19	A Philosophy of Technology: From Technical Artefacts to Sociotechnical Systems. Synthesis Lectures on Engineers, Technology, and Society, 2011, 6, 1-134.	0.1	54
20	Editorial: Ethics and Engineering Design. Science Technology and Human Values, 2006, 31, 223-236.	3.1	52
21	The ethics of nuclear power: Social experiments, intergenerational justice, and emotions. Energy Policy, 2012, 51, 202-206.	8.8	50
22	How Should We Do Nanoethics? A Network Approach for Discerning Ethical Issues in Nanotechnology. NanoEthics, 2008, 2, 25-38.	0.8	49
23	Investigating ethical issues in engineering design. Science and Engineering Ethics, 2001, 7, 429-446.	2.9	48
24	Ethics in the engineering curricula: Topics, trends and challenges for the future. European Journal of Engineering Education, 2000, 25, 291-302.	2.3	44
25	A network approach for distinguishing ethical issues in research and development. Science and Engineering Ethics, 2006, 12, 663-684.	2.9	41
26	Varieties of responsibility: two problems of responsible innovation. SynthÃ^se, 2021, 198, 4769-4787.	1.1	41
27	Learning to do responsible innovation in industry: six lessons. Journal of Responsible Innovation, 2020, 7, 697-707.	4.9	40
28	The Need for Ethical Reflection in Engineering Design. Science Technology and Human Values, 2006, 31, 333-360.	3.1	39
29	Nuclear Energy as a Social Experiment. Ethics, Policy and Environment, 2011, 14, 285-290.	1.3	36
30	Reflective Equilibrium in R & D Networks. Science Technology and Human Values, 2010, 35, 174-199.	3.1	33
31	Conflicting values in the smart electricity grid a comprehensive overview. Renewable and Sustainable Energy Reviews, 2019, 111, 184-196.	16.4	32
32	Can Technology Embody Values?. Philosophy of Engineering and Technology, 2014, , 103-124.	0.3	32
33	Designing Games to Teach Ethics. Science and Engineering Ethics, 2008, 14, 433-447.	2.9	31
34	How to Weigh Values in Value Sensitive Design: A Best Worst Method Approach for the Case of Smart Metering. Science and Engineering Ethics, 2020, 26, 475-494.	2.9	31
35	Editors' Overview: Moral Responsibility in Technology and Engineering. Science and Engineering Ethics, 2012, 18, 1-11.	2.9	29
36	Algorithms and values in justice and security. Al and Society, 2020, 35, 533-555.	4.6	26

#	Article	IF	Citations
37	Ethical considerations in engineering design processes. IEEE Technology and Society Magazine, 2001, 20, 15-22.	0.8	25
38	The Ethical Cycle. Journal of Business Ethics, 2007, 71, 1-13.	6.0	22
39	Why New Technologies Should be Conceived as Social Experiments. Ethics, Policy and Environment, 2013, 16, 352-355.	1.3	22
40	Digital platforms and responsible innovation: expanding value sensitive design to overcome ontological uncertainty. Ethics and Information Technology, 2020, 22, 257-267.	3.8	22
41	Moral Uncertainty in Technomoral Change: Bridging the Explanatory Gap. Perspectives on Science, 2022, 30, 260-283.	1.0	21
42	Conflicting Values in Design for Values. , 2015, , 89-116.		20
43	Three philosophical perspectives on the relation between technology and society, and how they affect the current debate about artificial intelligence. Human Affairs, 2020, 30, 499-511.	0.3	19
44	Making Values Explicit During the Design Process. IEEE Technology and Society Magazine, 2012, 31, 63-72.	0.8	17
45	Clarifying the debate on selection methods for engineering: Arrow's impossibility theorem, design performances, and information basis. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2014, 25, 3-10.	2.1	15
46	Teaching ethics and technology with Agora, an electronic tool. Science and Engineering Ethics, 2005, 11, 277-297.	2.9	14
47	The Bugs Eat the Waste: What Else is There to Know?. Social Studies of Science, 2008, 38, 605-634.	2.5	14
48	Risk and Responsibility., 2012,, 877-907.		14
49	A Review of Value-Conflicts in Cybersecurity. ORBIT Journal, 2017, 1, 1-19.	0.9	14
50	Philosophy and Engineering: Setting the Stage. Philosophy of Engineering and Technology, 2009, , 1-11.	0.3	13
51	Safe-by-Design in Engineering: An Overview and Comparative Analysis of Engineering Disciplines. International Journal of Environmental Research and Public Health, 2021, 18, 6329.	2.6	12
52	Understanding Technology-Induced Value Change: a Pragmatist Proposal. Philosophy and Technology, 2022, 35, 40.	4.3	12
53	Canvas White Paper 1 Cybersecurity and Ethics. SSRN Electronic Journal, 0, , .	0.4	11
54	The Food Warden: An Exploration of Issues in Distributing Responsibilities for Safe-by-Design Synthetic Biology Applications. Science and Engineering Ethics, 2018, 24, 1673-1696.	2.9	11

#	Article	IF	CITATIONS
55	Core Values and Value Conflicts in Cybersecurity: Beyond Privacy Versus Security. The International Library of Ethics, Law and Technology, 2020, , 45-71.	0.4	11
56	Values in Engineering and Technology. Boston Studies in the Philosophy and History of Science, 2015, , 29-46.	0.9	10
57	Risk and Responsibility. SpringerBriefs in Philosophy, 2013, , 107-143.	0.4	10
58	Conflicting Values in Design for Values. , 2014, , 1-23.		8
59	Deciding on Ethical Issues in Engineering Design. , 2008, , 77-89.		7
60	Value Change in Energy Systems. Science Technology and Human Values, 2022, 47, 371-379.	3.1	7
61	Understanding technical development: the concept of "Technological Regime". International Journal of Technology, Policy and Management, 2002, 2, 355.	0.3	6
62	The socio-technical challenges of nuclear power production and waste management in the post-Fukushima era: editors' overview. Journal of Risk Research, 2015, 18, 267-272.	2.6	6
63	Design for Values and the Definition, Specification, and Operationalization of Values., 2015, , 151-178.		6
64	Design for Values in Engineering. , 2015, , 667-690.		6
65	8.1.1 Systems engineering of socioâ€ŧechnical systems. Incose International Symposium, 2005, 15, 1122-1130.	0.6	5
66	Technology and Parental Responsibility: The Case of the V-Chip. Science and Engineering Ethics, 2012, 18, 285-300.	2.9	5
67	Values in engineering models: social ramifications of modeling in engineering design. Engineering Studies, 2013, 5, 93-116.	1.3	5
68	Informed Consent in Asymmetrical Relationships: an Investigation into Relational Factors that Influence Room for Reflection. NanoEthics, 2016, 10, 123-138.	0.8	5
69	Mandates and Methods for Early Engagement. Philosophy of Engineering and Technology, 2013, , 3-14.	0.3	5
70	Ethical Parallel Research: A Network Approach for Moral Evaluation (NAME). Philosophy of Engineering and Technology, 2013, , 111-136.	0.3	5
71	Dealing with Moral Dilemmas through Design. , 0, , 57-77.		4
72	Early Engagement and New Technologies: Towards Comprehensive Technology Engagement?. Philosophy of Engineering and Technology, 2013, , 233-251.	0.3	4

#	Article	IF	Citations
73	Design for Sustainability. , 2017, , .		4
74	A special section on research in engineering ethics towards a research programme for ethics and technology. Science and Engineering Ethics, 2001, 7, 365-378.	2.9	3
75	Responsible innovation, anticipation and responsiveness: case studies of algorithms in decision support in justice and security, and an exploration of potential, unintended, undesirable, higher-order effects. Al and Ethics, 2021, 1, 501-515.	6.8	3
76	Morally experimenting with nuclear energy. , 0, , 179-199.		2
77	Introduction to Part V. , 2009, , 883-886.		2
78	Understanding value change. Prometheus, 2022, 38, .	0.4	2
79	Moral transparency of and concerning algorithmic tools. Al and Ethics, 2023, 3, 585-600.	6.8	2
80	Safety management in the Dutch oil and gas industry: the effect on the technological regime. International Journal of Technology, Policy and Management, 2002, 2, 407.	0.3	1
81	Design for the Value of ResponsibilityResponsibility. , 2015, , 473-490.		1
82	Ethics in Innovation: Cooperation and Tension. Philosophy of Engineering and Technology, 2009, , 215-226.	0.3	1
83	Teaching Ethics to Engineering Students. Interview with Professor IBO VAN DE POEL Made on 25th September, 2014 at the Technical University of Delft by EULALIA SMUGA-FRIES during Her Internship There. Roczniki Filozoficzne, 2015, 63, 213-216.	0.0	1
84	Werthaltigkeit der Technik., 2013, , 133-137.		1
85	Design for Values in Engineering. , 2014, , 1-20.		1
86	Design for the Value of Responsibility. , 2014, , 1-15.		0