Berge A Minassian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9579001/publications.pdf

Version: 2024-02-01

85 papers 4,701 citations

35 h-index 65 g-index

90 all docs 90 docs citations

90 times ranked 4882 citing authors

#	Article	IF	CITATIONS
1	Lafora disease: Current biology and therapeutic approaches. Revue Neurologique, 2022, 178, 315-325.	1.5	16
2	Glycogen synthase downregulation rescues the amylopectinosis of murine RBCK1 deficiency. Brain, 2022, 145, 2361-2377.	7.6	12
3	AAV-Mediated Artificial miRNA Reduces Pathogenic Polyglucosan Bodies and Neuroinflammation in Adult Polyglucosan Body and Lafora Disease Mouse Models. Neurotherapeutics, 2022, 19, 982-993.	4.4	14
4	The role of common genetic variation in presumed monogenic epilepsies. EBioMedicine, 2022, 81, 104098.	6.1	12
5	Assessment of burden and segregation profiles of <scp>CNVs</scp> in patients with epilepsy. Annals of Clinical and Translational Neurology, 2022, 9, 1050-1058.	3.7	2
6	<i>Ppp$1r3d$</i> deficiency preferentially inhibits neuronal and cardiac Lafora body formation in a mouse model of the fatal epilepsy Lafora disease. Journal of Neurochemistry, 2021, 157, 1897-1910.	3.9	13
7	Targeting Gys1 with AAVâ€SaCas9 Decreases Pathogenic Polyglucosan Bodies and Neuroinflammation in Adult Polyglucosan Body and Lafora Disease Mouse Models. Neurotherapeutics, 2021, 18, 1414-1425.	4.4	26
8	The antioxidant MnTBAP does not effectively downregulate CD4 expression in T cells in vivo. Journal of Neuroimmunology, 2021, 354, 577544.	2.3	0
9	<i>Gys1</i> antisense therapy rescues neuropathological bases of murine Lafora disease. Brain, 2021, 144, 2985-2993.	7.6	30
10	Alleviation of a polyglucosan storage disorder by enhancement of autophagic glycogen catabolism. EMBO Molecular Medicine, 2021, 13, e14554.	6.9	13
11	Retinal alterations in patients with Lafora disease. American Journal of Ophthalmology Case Reports, 2021, 23, 101146.	0.7	4
12	EPM2A in-frame deletion slows neurological decline in Lafora Disease. Seizure: the Journal of the British Epilepsy Association, 2021, 91, 97-98.	2.0	1
13	An inducible glycogen synthase-1 knockout halts but does not reverse Lafora disease progression in mice. Journal of Biological Chemistry, 2021, 296, 100150.	3.4	23
14	GYS1 or PPP1R3C deficiency rescues murine adult polyglucosan body disease. Annals of Clinical and Translational Neurology, 2020, 7, 2186-2198.	3.7	16
15	Sensitive quantification of α-glucans in mouse tissues, cell cultures, and human cerebrospinal fluid. Journal of Biological Chemistry, 2020, 295, 14698-14709.	3.4	5
16	Ketogenic diet reduces Lafora bodies in murine Lafora disease. Neurology: Genetics, 2020, 6, e533.	1.9	7
17	Defining the phenotype of <i>FHF1</i> developmental and epileptic encephalopathy. Epilepsia, 2020, 61, e71-e78.	5.1	11
18	From Genetic Testing to Precision Medicine in Epilepsy. Neurotherapeutics, 2020, 17, 609-615.	4.4	62

#	Article	IF	CITATIONS
19	The 5th International Lafora Epilepsy Workshop: Basic science elucidating therapeutic options and preparing for therapies in the clinic. Epilepsy and Behavior, 2020, 103, 106839.	1.7	17
20	Exploiting the diphtheria toxin internalization receptor enhances delivery of proteins to lysosomes for enzyme replacement therapy. Science Advances, 2020, 6, .	10.3	6
21	Both gainâ€ofâ€function and lossâ€ofâ€function <i>de novo <scp>CACNA</scp>1A</i> mutations cause severe developmental epileptic encephalopathies in the spectrum of Lennoxâ€Gastaut syndrome. Epilepsia, 2019, 60, 1881-1894.	5.1	57
22	The best evidence for progressive myoclonic epilepsy: A pathway to precision therapy. Seizure: the Journal of the British Epilepsy Association, 2019, 71, 247-257.	2.0	57
23	Diabetes Mellitus in a Patient With Lafora Disease: Possible Links With Pancreatic Î ² -Cell Dysfunction and Insulin Resistance. Frontiers in Pediatrics, 2019, 6, 424.	1.9	6
24	Skeletal Muscle Glycogen Chain Length Correlates with Insolubility in Mouse Models of Polyglucosan-Associated Neurodegenerative Diseases. Cell Reports, 2019, 27, 1334-1344.e6.	6.4	40
25	Dominant <i>LMAN2L</i> mutation causes intellectual disability with remitting epilepsy. Annals of Clinical and Translational Neurology, 2019, 6, 807-811.	3.7	7
26	Genotypes and phenotypes of patients with Lafora disease living in Germany. Neurological Research and Practice, 2019, 1 , .	2.0	6
27	IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients. Genetics in Medicine, 2019, 21, 837-849.	2.4	47
28	Lafora disease offers a unique window into neuronal glycogen metabolism. Journal of Biological Chemistry, 2018, 293, 7117-7125.	3.4	71
29	Nationwide genetic testing towards eliminating Lafora disease from Miniature Wirehaired Dachshunds in the United Kingdom. Canine Genetics and Epidemiology, 2018, 5, 2.	2.8	18
30	Lafora Disease: A Review of Molecular Mechanisms and Pathology. Neuropediatrics, 2018, 49, 357-362.	0.6	19
31	Extraneurological sparing in longâ€lived typical Lafora disease. Epilepsia Open, 2018, 3, 295-298.	2.4	3
32	Lafora disease â€" from pathogenesis to treatment strategies. Nature Reviews Neurology, 2018, 14, 606-617.	10.1	110
33	Update on Pharmacological Treatment of Progressive Myoclonus Epilepsies. Current Pharmaceutical Design, 2018, 23, 5662-5666.	1.9	23
34	Lafora Disease: A Perspective in Molecular Mechanism and Pathology. Neuropediatrics, 2018, 49, S1-S12.	0.6	0
35	Abnormal glycogen chain length pattern, not hyperphosphorylation, is critical in Lafora disease. EMBO Molecular Medicine, 2017, 9, 906-917.	6.9	59
36	High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. American Journal of Human Genetics, 2017, 101, 664-685.	6.2	337

#	Article	IF	CITATIONS
37	A novel image-based high-throughput screening assay discovers therapeutic candidates for adult polyglucosan body disease. Biochemical Journal, 2017, 474, 3403-3420.	3.7	14
38	Genome annotation for clinical genomic diagnostics: strengths and weaknesses. Genome Medicine, 2017, 9, 49.	8.2	51
39	Cardiac autophagic vacuolation in severe X-linked myopathy with excessive autophagy. Neuromuscular Disorders, 2017, 27, 185-187.	0.6	23
40	Pathogenesis of Lafora Disease: Transition of Soluble Clycogen to Insoluble Polyglucosan. International Journal of Molecular Sciences, 2017, 18, 1743.	4.1	55
41	Lafora disease in miniature Wirehaired Dachshunds. PLoS ONE, 2017, 12, e0182024.	2.5	27
42	Lafora disease. Epileptic Disorders, 2016, 18, 38-62.	1.3	127
43	Efficacy and tolerability of perampanel in ten patients with Lafora disease. Epilepsy and Behavior, 2016, 62, 132-135.	1.7	76
44	Fatal hepatic failure and pontine and extrapontine myelinolysis in XMEA. Neurology, 2016, 87, 1417-1419.	1.1	1
45	SGK1 (glucose transport), dishevelled2 (wnt signaling), LC3/p62 (autophagy) and p53 (apoptosis) proteins are unaltered in Lafora disease. The All Results Journal Biol, 2016, 7, 28-33.	2.0	5
46	Congenital autophagic vacuolar myopathy is allelic to X-linked myopathy with excessive autophagy. Neurology, 2015, 84, 1714-1716.	1.1	18
47	Structural basis of glycogen branching enzyme deficiency and pharmacologic rescue by rational peptide design. Human Molecular Genetics, 2015, 24, 5667-5676.	2.9	58
48	Dimeric Quaternary Structure of Human Laforin. Journal of Biological Chemistry, 2015, 290, 4552-4559.	3.4	18
49	X-linked myopathy with excessive autophagy: a failure of self-eating. Acta Neuropathologica, 2015, 129, 383-390.	7.7	33
50	Non-coding VMA21 deletions cause X-linked Myopathy with Excessive Autophagy. Neuromuscular Disorders, 2015, 25, 207-211.	0.6	25
51	Deep Intronic <i>GBE1</i> Mutation in Manifesting Heterozygous Patients With Adult Polyglucosan Body Disease. JAMA Neurology, 2015, 72, 441.	9.0	33
52	No cardiomyopathy in X-linked myopathy with excessive autophagy. Neuromuscular Disorders, 2015, 25, 485-487.	0.6	12
53	Efficient Delivery of Structurally Diverse Protein Cargo into Mammalian Cells by a Bacterial Toxin. Molecular Pharmaceutics, 2015, 12, 2962-2971.	4.6	40
54	PTG protein depletion rescues malinâ€deficient Lafora disease in mouse. Annals of Neurology, 2014, 75, 442-446.	5.3	76

#	Article	IF	Citations
55	Late adultâ€onset of Xâ€linked myopathy with excessive autophagy. Muscle and Nerve, 2014, 50, 138-144.	2.2	17
56	The progressive myoclonus epilepsies. Progress in Brain Research, 2014, 213, 113-122.	1.4	15
57	Transition from glycogen to starch metabolism in Archaeplastida. Trends in Plant Science, 2014, 19, 18-28.	8.8	48
58	Laforin Prevents Stress-Induced Polyglucosan Body Formation and Lafora Disease Progression in Neurons. Molecular Neurobiology, 2013, 48, 49-61.	4.0	19
59	VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. Acta Neuropathologica, 2013, 125, 439-457.	7.7	119
60	Brain Dopamine–Serotonin Vesicular Transport Disease and Its Treatment. New England Journal of Medicine, 2013, 368, 543-550.	27.0	176
61	Hyperphosphorylation of Glucosyl C6 Carbons and Altered Structure of Glycogen in the Neurodegenerative Epilepsy Lafora Disease. Cell Metabolism, 2013, 17, 756-767.	16.2	80
62	Inhibiting glycogen synthesis prevents lafora disease in a mouse model. Annals of Neurology, 2013, 74, 297-300.	5.3	91
63	Progressive myoclonus epilepsy. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 113, 1731-1736.	1.8	36
64	Deficiency of a Glycogen Synthase-associated Protein, Epm2aip1, Causes Decreased Glycogen Synthesis and Hepatic Insulin Resistance. Journal of Biological Chemistry, 2013, 288, 34627-34637.	3.4	14
65	Increased Laforin and Laforin Binding to Glycogen Underlie Lafora Body Formation in Malin-deficient Lafora Disease. Journal of Biological Chemistry, 2012, 287, 25650-25659.	3.4	44
66	Early-onset Lafora body disease. Brain, 2012, 135, 2684-2698.	7.6	76
67	Identification of genomic deletions spanning the <i>PCDH19</i> gene in two unrelated girls with intellectual disability and seizures. Clinical Genetics, 2012, 82, 540-545.	2.0	30
68	Phosphorylation prevents polyglucosan transport in Lafora disease. Neurology, 2012, 79, 100-102.	1.1	7
69	PTG Depletion Removes Lafora Bodies and Rescues the Fatal Epilepsy of Lafora Disease. PLoS Genetics, 2011, 7, e1002037.	3.5	185
70	LGI2 Truncation Causes a Remitting Focal Epilepsy in Dogs. PLoS Genetics, 2011, 7, e1002194.	3.5	88
71	Glycogen hyperphosphorylation underlies lafora body formation. Annals of Neurology, 2010, 68, 925-933.	5.3	96
72	Unverricht-Lundborg Progressive Myoclonus Epilepsy in Oman. Pediatric Neurology, 2008, 38, 252-255.	2.1	14

#	Article	IF	CITATIONS
73	Typical progression of myoclonic epilepsy of the Lafora type: a case report. Nature Clinical Practice Neurology, 2008, 4, 106-111.	2.5	47
74	Abnormal Metabolism of Glycogen Phosphate as a Cause for Lafora Disease. Journal of Biological Chemistry, 2008, 283, 33816-33825.	3.4	153
75	Thrombocytopathy and leukocytopathy in X-linked Myopathy with Excessive Autophagy (XMEA). Microscopy and Microanalysis, 2008, 14, 1524-1525.	0.4	O
76	Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19262-19266.	7.1	181
77	Glycogen metabolism in tissues from a mouse model of Lafora disease. Archives of Biochemistry and Biophysics, 2007, 457, 264-269.	3.0	35
78	Animal Models of Lafora Disease. Microscopy and Microanalysis, 2006, 12, 12-13.	0.4	1
79	Lafora progressive myoclonus epilepsy mutation database-EPM2A and NHLRC1 (EMP2B) genes. Human Mutation, 2005, 26, 397-397.	2.5	59
80	Novel glycogen synthase kinase 3 and ubiquitination pathways in progressive myoclonus epilepsy. Human Molecular Genetics, 2005, 14, 2727-2736.	2.9	146
81	Laforin preferentially binds the neurotoxic starch-like polyglucosans, which form in its absence in progressive myoclonus epilepsy. Human Molecular Genetics, 2004, 13, 1117-1129.	2.9	101
82	Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nature Genetics, 2003, 35, 125-127.	21.4	294
83	Lafora's disease: towards a clinical, pathologic, and molecular synthesis. Pediatric Neurology, 2001, 25, 21-29.	2.1	174
84	Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nature Genetics, 1998, 20, 171-174.	21.4	499
85	Gene Therapy: Novel Approaches to Targeting Monogenic Epilepsies. Frontiers in Neurology, 0, 13, .	2.4	3