Matthew T Klug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578965/publications.pdf

Version: 2024-02-01

471509 677142 2,017 21 17 22 citations h-index g-index papers 23 23 23 3932 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy and Environmental Science, 2017, 10, 145-152.	30.8	319
2	Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy and Environmental Science, 2017, 10, 236-246.	30.8	230
3	High irradiance performance of metal halide perovskites for concentrator photovoltaics. Nature Energy, 2018, 3, 855-861.	39.5	180
4	Solution-Processed All-Perovskite Multi-junction Solar Cells. Joule, 2019, 3, 387-401.	24.0	177
5	Tunable Localized Surface Plasmon-Enabled Broadband Light-Harvesting Enhancement for High-Efficiency Panchromatic Dye-Sensitized Solar Cells. Nano Letters, 2013, 13, 637-642.	9.1	162
6	The Effects of Doping Density and Temperature on the Optoelectronic Properties of Formamidinium Tin Triiodide Thin Films. Advanced Materials, 2018, 30, e1804506.	21.0	156
7	Fractional deviations in precursor stoichiometry dictate the properties, performance and stability of perovskite photovoltaic devices. Energy and Environmental Science, 2018, 11, 3380-3391.	30.8	125
8	A Universal Deposition Protocol for Planar Heterojunction Solar Cells with High Efficiency Based on Hybrid Lead Halide Perovskite Families. Advanced Materials, 2016, 28, 10701-10709.	21.0	100
9	Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries. Energy and Environmental Science, 2014, 7, 3659-3665.	30.8	94
10	Metal composition influences optoelectronic quality in mixed-metal lead–tin triiodide perovskite solar absorbers. Energy and Environmental Science, 2020, 13, 1776-1787.	30.8	87
11	Versatile Three-Dimensional Virus-Based Template for Dye-Sensitized Solar Cells with Improved Electron Transport and Light Harvesting. ACS Nano, 2013, 7, 6563-6574.	14.6	84
12	Assembly of a Bacteriophageâ€Based Template for the Organization of Materials into Nanoporous Networks. Advanced Materials, 2014, 26, 3398-3404.	21.0	63
13	Assembly of Viral Hydrogels for Threeâ€Dimensional Conducting Nanocomposites. Advanced Materials, 2014, 26, 5101-5107.	21.0	49
14	Microsecond Carrier Lifetimes, Controlled p-Doping, and Enhanced Air Stability in Low-Bandgap Metal Halide Perovskites. ACS Energy Letters, 2019, 4, 2301-2307.	17.4	46
15	M13 Virus-Enabled Synthesis of Titanium Dioxide Nanowires for Tunable Mesoporous Semiconducting Networks. Chemistry of Materials, 2015, 27, 1531-1540.	6.7	44
16	Dual-Source Coevaporation of Low-Bandgap FA _{1â€"<i>y</i>} Pb _{<i>y</i>} IPb _{<i>y</i>} Perovskites for Photovoltaics. ACS Energy Letters, 2019, 4, 2748-2756.	(etrp >	43
17	Perovskite/silicon tandem photovoltaics: Technological disruption without business disruption. Applied Physics Letters, 2021, 119, .	3.3	22
18	Charge-Carrier Cooling and Polarization Memory Loss in Formamidinium Tin Triiodide. Journal of Physical Chemistry Letters, 2019, 10, 6038-6047.	4.6	16

#	Article	IF	CITATIONS
19	Response to the comments on "Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries―by Po-Yen Chen, Jifa Qi, Matthew T. Klug, Xiangnan Dang, Paula T. Hammond, and Angela M. Belcher published in Energy Environ. Sci. in 2014. Energy and Environmental Science. 2015, 8, 1618-1625.	30.8	8
20	Mediated Growth of Zinc Chalcogen Shells on Gold Nanoparticles by Free-Base Amino Acids. Chemistry of Materials, 2017, 29, 6993-7001.	6.7	8
21	Nanoporous Networks: Assembly of a Bacteriophage-Based Template for the Organization of Materials into Nanoporous Networks (Adv. Mater. 21/2014). Advanced Materials, 2014, 26, 3568-3568.	21.0	0