Qiyang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578958/publications.pdf

Version: 2024-02-01

		516710	677142
22	1,395	16	22
papers	citations	h-index	g-index
22	22	22	0500
23	23	23	2520
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reversible Hydrogen-Induced Phase Transformations in La _{0.7} Sr _{0.3} MnO ₃ Thin Films Characterized by In Situ Neutron Reflectometry. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10898-10906.	8.0	10
2	Carbonate formation lowers the electrocatalytic activity of perovskite oxides for water electrolysis. Journal of Materials Chemistry A, 2021, 9, 19940-19948.	10.3	11
3	Tuning electrochemically driven surface transformation in atomically flat LaNiO3 thin films for enhanced water electrolysis. Nature Materials, 2021, 20, 674-682.	27.5	105
4	Layer-resolved many-electron interactions in delafossite PdCoO2 from standing-wave photoemission spectroscopy. Communications Physics, 2021, 4, .	5. 3	7
5	Interface Engineering of Metalâ€Oxide Fieldâ€Effect Transistors for Lowâ€Drift pH Sensing. Advanced Materials Interfaces, 2021, 8, 2100314.	3.7	13
6	Metal–insulator transition tuned by oxygen vacancy migration across TiO2/VO2 interface. Scientific Reports, 2020, 10, 18554.	3.3	24
7	Colossal oxygen vacancy formation at a fluorite-bixbyite interface. Nature Communications, 2020, 11, 1371.	12.8	39
8	Bi-directional tuning of thermal transport in SrCoOx with electrochemically induced phase transitions. Nature Materials, 2020, 19, 655-662.	27.5	88
9	Threshold catalytic onset of carbon formation on CeO ₂ during CO ₂ electrolysis: mechanism and inhibition. Journal of Materials Chemistry A, 2019, 7, 15233-15243.	10.3	19
10	Pulsed-laser epitaxy of topological insulator Bi2Te3 thin films. APL Materials, 2019, 7, .	5.1	24
11	Pushing the detection of cation nonstoichiometry to the limit. Physical Review Materials, 2019, 3, .	2.4	13
12	Growth of metallic delafossite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>PdCo</mml:mi><mml:msub><mml: mathvariant="normal">O<mml:mn>2</mml:mn></mml:></mml:msub></mml:mrow></mml:math> by molecular beam epitaxy. Physical Review Materials, 2019, 3, .	:mi 2.4	35
13	Charge Transfer Across Oxide Interfaces Probed by in Situ X-ray Photoelectron and Absorption Spectroscopy Techniques. Journal of Physical Chemistry C, 2018, 122, 4841-4848.	3.1	11
14	Surface Defect Chemistry and Electronic Structure of Pr0.1Ce0.9O2â^Î Revealed in Operando. Chemistry of Materials, 2018, 30, 2600-2606.	6.7	24
15	Electrochemically Triggered Metal–Insulator Transition between VO ₂ and V ₂ O ₅ . Advanced Functional Materials, 2018, 28, 1803024.	14.9	46
16	Structure, Chemistry, and Charge Transfer Resistance of the Interface between Li ₇ La ₃ Zr ₂ O ₁₂ Electrolyte and LiCoO ₂ Cathode. Chemistry of Materials, 2018, 30, 6259-6276.	6.7	125
17	A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells. Energy and Environmental Science, 2017, 10, 964-971.	30.8	204
18	Electronic Structure Evolution of SrCoO _{<i>x</i>} during Electrochemically Driven Phase Transition Probed by <i>in Situ</i>	3.1	40

#	Article	IF	CITATIONS
19	Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. Nature Materials, 2016, 15, 1010-1016.	27.5	312
20	Resistive Switching Mechanisms on TaO _{<i>x</i>} and SrRuO ₃ Thin-Film Surfaces Probed by Scanning Tunneling Microscopy. ACS Nano, 2016, 10, 1481-1492.	14.6	100
21	Voltage-Controlled Topotactic Phase Transition in Thin-Film SrCoO _{<i>x</i>} Monitored by In Situ X-ray Diffraction. Nano Letters, 2016, 16, 1186-1193.	9.1	116
22	Improved electrochemical stability at the surface of La _{0.8} Sr _{0.2} CoO ₃ achieved by surface chemical modification. Faraday Discussions, 2015, 182, 257-269.	3.2	29