Gary A Molander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578945/publications.pdf

Version: 2024-02-01

216 papers 22,269 citations

80 h-index 138 g-index

228 all docs

228 docs citations

times ranked

228

10259 citing authors

#	Article	IF	Citations
1	Photochemical C–H arylation of heteroarenes for DNA-encoded library synthesis. Chemical Science, 2022, 13, 1023-1029.	7.4	24
2	Nickel-Mediated Synthesis of Non-Anomeric <i>C</i> -Acyl Glycosides through Electron Donor–Acceptor Complex Photoactivation. Journal of Organic Chemistry, 2022, 87, 4981-4990.	3.2	15
3	Sustainable Thioetherification via Electron Donor–Acceptor Photoactivation Using Thianthrenium Salts. Angewandte Chemie, 2022, 134, .	2.0	9
4	Sustainable Thioetherification via Electron Donor–Acceptor Photoactivation Using Thianthrenium Salts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	65
5	Thianthrenium-enabled sulfonylation via electron donor-acceptor complex photoactivation. Chem Catalysis, 2022, 2, 898-907.	6.1	38
6	Synthesis of α-Fluorinated Areneacetates through Photoredox/Copper Dual Catalysis. Organic Letters, 2022, 24, 3194-3198.	4.6	12
7	A practical and sustainable two-component Minisci alkylation <i>via</i> photo-induced EDA-complex activation. Chemical Science, 2022, 13, 5701-5706.	7.4	25
8	From Styrenes to Fluorinated Benzyl Bromides: A Photoinduced Difunctionalization via Atom Transfer Radical Addition. Organic Letters, 2022, 24, 4750-4755.	4.6	18
9	On-DNA Hydroalkylation to Introduce Diverse Bicyclo[1.1.1]pentanes and Abundant Alkyls via Halogen Atom Transfer. Journal of the American Chemical Society, 2022, 144, 12184-12191.	13.7	28
10	Solid-Phase Photochemical Peptide Homologation Cyclization. Organic Letters, 2022, 24, 5176-5180.	4.6	3
11	Stereoinduction in Metallaphotoredox Catalysis. Angewandte Chemie - International Edition, 2021, 60, 1714-1726.	13.8	161
12	Stereoinduktion in der Metallaphotoredoxkatalyse. Angewandte Chemie, 2021, 133, 1738-1750.	2.0	24
13	Photoredox-mediated hydroalkylation and hydroarylation of functionalized olefins for DNA-encoded library synthesis. Chemical Science, 2021, 12, 12036-12045.	7.4	40
14	Photoactive electron donor–acceptor complex platform for Ni-mediated C(sp ⁾³)–C(sp ²) bond formation. Chemical Science, 2021, 12, 5450-5457.	7.4	91
15	Photoinduced 1,2-dicarbofunctionalization of alkenes with organotrifluoroborate nucleophiles <i>via</i> radical/polar crossover. Chemical Science, 2021, 12, 9189-9195.	7.4	36
16	Selectivity in the Elaboration of Bicyclic Borazarenes. Advanced Synthesis and Catalysis, 2021, 363, 2256-2273.	4.3	22
17	Developments in Photoredox-Mediated Alkylation for DNA-Encoded Libraries. Trends in Chemistry, 2021, 3, 161-175.	8.5	34
18	Photochemical C–H Activation Enables Nickel-Catalyzed Olefin Dicarbofunctionalization. Journal of the American Chemical Society, 2021, 143, 3901-3910.	13.7	106

#	Article	IF	Citations
19	Accessing Aliphatic Amines in C–C Cross-Couplings by Visible Light/Nickel Dual Catalysis. Organic Letters, 2021, 23, 4250-4255.	4.6	12
20	Nickel-Catalyzed Decarboxylative Cross-Coupling of Bicyclo[1.1.1]pentyl Radicals Enabled by Electron Donor–Acceptor Complex Photoactivation. Organic Letters, 2021, 23, 4828-4833.	4.6	44
21	Catalystâ€Free Decarbonylative Trifluoromethylthiolation Enabled by Electron Donorâ€Acceptor Complex Photoactivation. Advanced Synthesis and Catalysis, 2021, 363, 3507-3520.	4.3	38
22	Cluster Preface: Modern Nickel-Catalyzed Reactions. Synlett, 2021, 32, 1492-1493.	1.8	3
23	Solid-Phase Photochemical Decarboxylative Hydroalkylation of Peptides. Organic Letters, 2021, 23, 8219-8223.	4.6	16
24	Photochemical C–F Activation Enables Defluorinative Alkylation of Trifluoroacetates and -Acetamides. Journal of the American Chemical Society, 2021, 143, 19648-19654.	13.7	104
25	Radicalâ€Polar Crossover Annulation: A Platform for Accessing Polycyclic Cyclopropanes. Advanced Synthesis and Catalysis, 2020, 362, 242-247.	4.3	14
26	Developments in Photoredox/Nickel Dual-Catalyzed 1,2-Difunctionalizations. CheM, 2020, 6, 1327-1339.	11.7	173
27	On the Nature of C(sp ³)–C(sp ²) Bond Formation in Nickel-Catalyzed Tertiary Radical Cross-Couplings: A Case Study of Ni/Photoredox Catalytic Cross-Coupling of Alkyl Radicals and Aryl Halides. Journal of the American Chemical Society, 2020, 142, 7225-7234.	13.7	151
28	Diastereoselective olefin amidoacylation <i>via</i> photoredox PCET/nickel-dual catalysis: reaction scope and mechanistic insights. Chemical Science, 2020, 11, 4131-4137.	7.4	37
29	Photoredoxâ€Mediated Netâ€Neutral Radical/Polar Crossover Reactions. Israel Journal of Chemistry, 2020, 60, 281-293.	2.3	108
30	Multifunctional Building Blocks Compatible with Photoredox-Mediated Alkylation for DNA-Encoded Library Synthesis. Organic Letters, 2020, 22, 1046-1051.	4.6	57
31	Regioselective Single-Electron Tsuji–Trost Reaction of Allylic Alcohols: A Photoredox/Nickel Dual Catalytic Approach. Organic Letters, 2019, 21, 6543-6547.	4.6	31
32	Oxa- and Azabenzonorbornadienes as Electrophilic Partners under Photoredox/Nickel Dual Catalysis. ACS Catalysis, 2019, 9, 8835-8842.	11.2	29
33	Synthesis of \hat{I} ±-Fluoro- \hat{I} ±-amino Acid Derivatives via Photoredox-Catalyzed Carbofluorination. ACS Catalysis, 2019, 9, 1558-1563.	11.2	76
34	Metal-free defluorinative arylation of trifluoromethyl alkenes <i>via</i> photoredox catalysis. Chemical Communications, 2019, 55, 7599-7602.	4.1	83
35	Photoredox-Catalyzed Multicomponent Petasis Reaction with Alkyltrifluoroborates. Organic Letters, 2019, 21, 4853-4858.	4.6	57
36	Deaminative Reductive Arylation Enabled by Nickel/Photoredox Dual Catalysis. Organic Letters, 2019, 21, 3346-3351.	4.6	139

#	Article	IF	CITATIONS
37	Photoredox Catalysis Enables Access to N-Functionalized 2,1-Borazaronaphthalenes. Organic Letters, 2019, 21, 2880-2884.	4.6	14
38	Photoredox Radical/Polar Crossover Enables Construction of Saturated Nitrogen Heterocycles. Organic Letters, 2019, 21, 2317-2321.	4.6	51
39	Desulfonative photoredox alkylation of <i>N</i> -heteroaryl sulfones $\hat{a}\in$ " an acid-free approach for substituted heteroarene synthesis. Chemical Science, 2019, 10, 4389-4393.	7.4	38
40	Open-Air Alkylation Reactions in Photoredox-Catalyzed DNA-Encoded Library Synthesis. Journal of the American Chemical Society, 2019, 141, 3723-3732.	13.7	250
41	Three-Component Olefin Dicarbofunctionalization Enabled by Nickel/Photoredox Dual Catalysis. Journal of the American Chemical Society, 2019, 141, 20069-20078.	13.7	162
42	Alkylâ€Câ€Câ€Bindungsbildung durch Nickel/Photoredoxâ€Kreuzkupplung. Angewandte Chemie, 2019, 131, 6212-6224.	2.0	101
43	Merging Photoredox PCET with Ni-Catalyzed Cross-Coupling: Cascade Amidoarylation of Unactivated Olefins. CheM, 2019, 5, 339-352.	11.7	89
44	Alkyl Carbon–Carbon Bond Formation by Nickel/Photoredox Cross oupling. Angewandte Chemie - International Edition, 2019, 58, 6152-6163.	13.8	465
45	Engaging sulfinate salts <i>via</i> Ni/photoredox dual catalysis enables facile C _{sp2} –SO ₂ R coupling. Chemical Science, 2018, 9, 3186-3191.	7.4	104
46	Rapid access to diverse, trifluoromethyl-substituted alkenes using complementary strategies. Chemical Science, 2018, 9, 3215-3220.	7.4	21
47	Synthesis of Reversed <i>C</i> â€Acyl Glycosides through Ni/Photoredox Dual Catalysis. Angewandte Chemie, 2018, 130, 6720-6723.	2.0	44
48	Photoredox-catalyzed Direct Reductive Amination of Aldehydes without an External Hydrogen/Hydride Source. Organic Letters, 2018, 20, 2680-2684.	4.6	32
49	Synthesis of Nonâ€Classical Arylated Câ€Saccharides through Nickel/Photoredox Dual Catalysis. Angewandte Chemie, 2018, 130, 6724-6728.	2.0	40
50	Synthesis of Reversed <i>C</i> â€Acyl Glycosides through Ni/Photoredox Dual Catalysis. Angewandte Chemie - International Edition, 2018, 57, 6610-6613.	13.8	151
51	Synthesis of Nonâ€Classical Arylated Câ€Saccharides through Nickel/Photoredox Dual Catalysis. Angewandte Chemie - International Edition, 2018, 57, 6614-6618.	13.8	142
52	Scalable thioarylation of unprotected peptides and biomolecules under Ni/photoredox catalysis. Chemical Science, 2018, 9, 336-344.	7.4	123
53	Photoredox/Nickel atalyzed Singleâ€Electron Tsuji–Trost Reaction: Development and Mechanistic Insights. Angewandte Chemie - International Edition, 2018, 57, 15847-15851.	13.8	84
54	Photoredox/Nickelâ€Catalyzed Singleâ€Electron Tsuji–Trost Reaction: Development and Mechanistic Insights. Angewandte Chemie, 2018, 130, 16073-16077.	2.0	23

#	Article	IF	CITATIONS
55	Radical/Polar Annulation Reactions (RPARs) Enable the Modular Construction of Cyclopropanes. Organic Letters, 2018, 20, 6840-6844.	4.6	57
56	3-Boryl-2,1-borazaronaphthalene: Umpolung Reagents for Diversifying Naphthalene Isosteres. Journal of Organic Chemistry, 2018, 83, 9484-9491.	3.2	10
57	Redox-Neutral Photocatalytic Cyclopropanation via Radical/Polar Crossover. Journal of the American Chemical Society, 2018, 140, 8037-8047.	13.7	177
58	Organocatalyzed, Photoredox Heteroarylation of 2-Trifluoroboratochromanones via C–H Functionalization. Organic Letters, 2017, 19, 950-953.	4.6	71
59	Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis. Nature Protocols, 2017, 12, 472-492.	12.0	72
60	Direct \hat{l} ±-Arylation/Heteroarylation of 2-Trifluoroboratochromanones via Photoredox/Nickel Dual Catalysis. Organic Letters, 2017, 19, 436-439.	4.6	56
61	Synergistic Photoredox/Nickel Coupling of Acyl Chlorides with Secondary Alkyltrifluoroborates: Dialkyl Ketone Synthesis. Journal of Organic Chemistry, 2017, 82, 1856-1863.	3.2	54
62	Mild, Redox-Neutral Alkylation of Imines Enabled by an Organic Photocatalyst. ACS Catalysis, 2017, 7, 1766-1770.	11.2	147
63	Metal-free C–H alkylation of heteroarenes with alkyltrifluoroborates: a general protocol for 1°, 2° and 3° alkylation. Chemical Science, 2017, 8, 3512-3522.	7.4	239
64	Azaborininones: Synthesis and Structural Analysis of a Carbonyl-Containing Class of Azaborines. Journal of Organic Chemistry, 2017, 82, 5380-5390.	3.2	18
65	<i>O</i> -Benzyl Xanthate Esters under Ni/Photoredox Dual Catalysis: Selective Radical Generation and Csp ³ –Csp ² Cross-Coupling. ACS Catalysis, 2017, 7, 3955-3959.	11.2	76
66	Synergistic Visible-Light Photoredox/Nickel-Catalyzed Synthesis of Aliphatic Ketones via N–C Cleavage of Imides. Organic Letters, 2017, 19, 2426-2429.	4.6	111
67	Direct Conversion of Carboxylic Acids to Alkyl Ketones. Organic Letters, 2017, 19, 3612-3615.	4.6	77
68	Photoredox-Mediated Routes to Radicals: The Value of Catalytic Radical Generation in Synthetic Methods Development. ACS Catalysis, 2017, 7, 2563-2575.	11,2	468
69	Method for Accessing Nitrogen-Containing, <i>B</i> -Heteroaryl-Substituted 2,1-Borazaronaphthalenes. Journal of Organic Chemistry, 2017, 82, 549-555.	3.2	28
70	Nickel/Photoredox-Catalyzed Amidation via Alkylsilicates and Isocyanates. ACS Catalysis, 2017, 7, 7957-7961.	11,2	56
71	Photoredox Generation of Carbon entered Radicals Enables the Construction of 1,1â€Difluoroalkene Carbonyl Mimics. Angewandte Chemie - International Edition, 2017, 56, 15073-15077.	13.8	276
72	Late-Stage C–H Alkylation of Heterocycles and 1,4-Quinones via Oxidative Homolysis of 1,4-Dihydropyridines. Journal of the American Chemical Society, 2017, 139, 12251-12258.	13.7	218

#	Article	IF	CITATIONS
73	Enabling the Cross-Coupling of Tertiary Organoboron Nucleophiles through Radical-Mediated Alkyl Transfer. Journal of the American Chemical Society, 2017, 139, 9847-9850.	13.7	208
74	Regioselective Diversification of 2,1-Borazaronaphthalenes: Unlocking Isosteric Space via C–H Activation. Journal of Organic Chemistry, 2017, 82, 8072-8084.	3.2	24
75	Aminomethylation of Aryl Halides Using \hat{l}_{\pm} -Silylamines Enabled by Ni/Photoredox Dual Catalysis. ACS Catalysis, 2017, 7, 6065-6069.	11.2	67
76	Direct Synthesis of Secondary Benzylic Alcohols Enabled by Photoredox/Ni Dual-Catalyzed Cross-Coupling. Journal of Organic Chemistry, 2017, 82, 13728-13734.	3.2	34
77	Haloselective Cross-Coupling via Ni/Photoredox Dual Catalysis. ACS Catalysis, 2017, 7, 5129-5133.	11.2	46
78	C(sp ³)–C(sp ²) cross-coupling of alkylsilicates with borylated aryl bromides – an iterative platform to alkylated aryl- and heteroaryl boronates. Chemical Science, 2017, 8, 530-535.	7.4	47
79	Photoredox Generation of Carbonâ€Centered Radicals Enables the Construction of 1,1â€Difluoroalkene Carbonyl Mimics. Angewandte Chemie, 2017, 129, 15269-15273.	2.0	48
80	Preparation of Diisopropylammonium Bis(catecholato)cyclohexylsilicate. Organic Syntheses, 2017, 94, 16-33.	1.0	10
81	Single-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp ³ –sp ² Cross-Coupling. Accounts of Chemical Research, 2016, 49, 1429-1439.	15.6	564
82	Single-Electron Transmetalation: Protecting-Group-Independent Synthesis of Secondary Benzylic Alcohol Derivatives via Photoredox/Nickel Dual Catalysis. Organic Letters, 2016, 18, 2572-2575.	4.6	41
83	αâ€Arylation/Heteroarylation of Chiral αâ€Aminomethyltrifluoroborates by Synergistic Iridium Photoredox/Nickel Crossâ€Coupling Catalysis. Angewandte Chemie - International Edition, 2016, 55, 254-258.	13.8	131
84	Synthesis of Functionalized 1,3,2-Benzodiazaborole Cores Using Bench-Stable Components. Journal of Organic Chemistry, 2016, 81, 3771-3779.	3.2	21
85	Photochemical Nickel-Catalyzed C–H Arylation: Synthetic Scope and Mechanistic Investigations. Journal of the American Chemical Society, 2016, 138, 12715-12718.	13.7	399
86	1,4-Dihydropyridines as Alkyl Radical Precursors: Introducing the Aldehyde Feedstock to Nickel/Photoredox Dual Catalysis. ACS Catalysis, 2016, 6, 8004-8008.	11.2	216
87	Single-Electron Transmetalation: Photoredox/Nickel Dual Catalytic Cross-Coupling of Secondary Alkyl β-Trifluoroboratoketones and -esters with Aryl Bromides. Organic Letters, 2016, 18, 2994-2997.	4.6	42
88	Visible-Light-Mediated Alkenylation, Allylation, and Cyanation of Potassium Alkyltrifluoroborates with Organic Photoredox Catalysts. Journal of Organic Chemistry, 2016, 81, 7308-7313.	3.2	113
89	Phenol Derivatives as Coupling Partners with Alkylsilicates in Photoredox/Nickel Dual Catalysis. Journal of Organic Chemistry, 2016, 81, 7271-7275.	3.2	40
90	Photoredox Catalysis in Nickel-Catalyzed Cross-Coupling. Topics in Current Chemistry, 2016, 374, 39.	5.8	74

#	Article	IF	Citations
91	Accessing Elaborated 2,1-Borazaronaphthalene Cores Using Photoredox/Nickel Dual-Catalytic Functionalization. Organic Letters, 2016, 18, 1606-1609.	4.6	51
92	Singleâ€Electron Transmetalation: Synthesis of 1,1â€Diarylâ€2,2,2â€trifluoroethanes by Photoredox/Nickel Dual Catalytic Crossâ€Coupling. Chemistry - A European Journal, 2016, 22, 120-123.	3.3	81
93	Thioetherification via Photoredox/Nickel Dual Catalysis. Organic Letters, 2016, 18, 876-879.	4.6	180
94	Engaging Alkenyl Halides with Alkylsilicates via Photoredox Dual Catalysis. Organic Letters, 2016, 18, 764-767.	4.6	100
95	Visible Light Photoredox Cross-Coupling of Acyl Chlorides with Potassium Alkoxymethyltrifluoroborates: Synthesis of α-Alkoxyketones. Organic Letters, 2016, 18, 732-735.	4.6	100
96	Base-Free Photoredox/Nickel Dual-Catalytic Cross-Coupling of Ammonium Alkylsilicates. Journal of the American Chemical Society, 2016, 138, 475-478.	13.7	248
97	Single-Electron Transmetalation: An Enabling Technology for Secondary Alkylboron Cross-Coupling. Journal of the American Chemical Society, 2015, 137, 2195-2198.	13.7	286
98	Engaging Nonaromatic, Heterocyclic Tosylates in Reductive Cross-Coupling with Aryl and Heteroaryl Bromides. Journal of Organic Chemistry, 2015, 80, 2907-2911.	3.2	80
99	Photoredox Cross-Coupling: Ir/Ni Dual Catalysis for the Synthesis of Benzylic Ethers. Organic Letters, 2015, 17, 3294-3297.	4.6	113
100	Organotrifluoroborates: Another Branch of the Mighty Oak. Journal of Organic Chemistry, 2015, 80, 7837-7848.	3.2	177
101	A modified procedure for the palladium catalyzed borylation/Suzuki-Miyaura cross-coupling of aryl and heteroaryl halides utilizing bis-boronic acid. Tetrahedron, 2015, 71, 5758-5764.	1.9	30
102	Toward Efficient Nucleophilic Azaborine Building Blocks for the Synthesis of B–N Naphthyl (Hetero)arylmethane Isosteres. Organic Letters, 2015, 17, 3624-3627.	4.6	22
103	Nickel-Catalyzed Cross-Coupling of Photoredox-Generated Radicals: Uncovering a General Manifold for Stereoconvergence in Nickel-Catalyzed Cross-Couplings. Journal of the American Chemical Society, 2015, 137, 4896-4899.	13.7	491
104	Copper-mediated N-arylation of methyl 2-aminothiophene-3-carboxylate with organoboron reagents. Tetrahedron Letters, 2015, 56, 6839-6842.	1.4	10
105	Protecting group-free, selective cross-coupling of alkyltrifluoroborates with borylated aryl bromides via photoredox/nickel dual catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12026-12029.	7.1	82
106	Diastereoselective Synthesis of Vicinally Bis(trifluoromethylated) Alkylboron Compounds through Successive Insertions of 2,2,2â€Trifluorodiazoethane. Angewandte Chemie - International Edition, 2014, 53, 14181-14185.	13.8	89
107	A Convergent, Modular Approach to Functionalized 2,1-Borazaronaphthalenes from 2-Aminostyrenes and Potassium Organotrifluoroborates. Journal of Organic Chemistry, 2014, 79, 365-378.	3.2	83
108	Accessing 2-(Hetero)arylmethyl-, -allyl-, and -propargyl-2,1-borazaronaphthalenes: Palladium-Catalyzed Cross-Couplings of 2-(Chloromethyl)-2,1-borazaronaphthalenes. Organic Letters, 2014, 16, 6024-6027.	4.6	22

#	Article	IF	Citations
109	Suzuki–Miyaura Cross-Coupling of Brominated 2,1-Borazaronaphthalenes with Potassium Alkenyltrifluoroborates. Journal of Organic Chemistry, 2014, 79, 11199-11204.	3.2	21
110	Accessing 2,1-Borazaronaphthols: Self-Arylation of 1-Alkyl-2-aryl-3-bromo-2,1-borazaronaphthalenes. Journal of Organic Chemistry, 2014, 79, 8339-8347.	3.2	22
111	Accessing an Azaborine Building Block: Synthesis and Substitution Reactions of 2-Chloromethyl-2,1-borazaronaphthalene. Organic Letters, 2014, 16, 5636-5639.	4.6	31
112	Reductive Cross-Coupling of 3-Bromo-2,1-borazaronaphthalenes with Alkyl lodides. Organic Letters, 2014, 16, 3692-3695.	4.6	58
113	Accessing Molecularly Complex Azaborines: Palladium-Catalyzed Suzuki–Miyaura Cross-Couplings of Brominated 2,1-Borazaronaphthalenes and Potassium Organotrifluoroborates. Journal of Organic Chemistry, 2014, 79, 6663-6678.	3.2	58
114	Reductive Cross-Coupling of Nonaromatic, Heterocyclic Bromides with Aryl and Heteroaryl Bromides. Journal of Organic Chemistry, 2014, 79, 5771-5780.	3.2	103
115	Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science, 2014, 345, 433-436.	12.6	1,045
116	Stereospecific Ni-Catalyzed Cross-Coupling of Potassium Alkenyltrifluoroborates with Alkyl Halides. Organic Letters, 2014, 16, 1904-1907.	4.6	20
117	Pd-Catalyzed Alkynylation of 2-Chloroacetates and 2-Chloroacetamides with Potassium Alkynyltrifluoroborates. Organic Letters, 2013, 15, 5052-5055.	4.6	21
118	Synthesis and Minisci Reactions of Organotrifluoroborato Building Blocks. Journal of Organic Chemistry, 2013, 78, 4615-4619.	3.2	77
119	Palladium-Catalyzed α-Arylation of 2-Chloroacetates and 2-Chloroacetamides. Journal of Organic Chemistry, 2013, 78, 4123-4131.	3.2	37
120	Pd-Catalyzed Cross-Coupling of Potassium Alkenyltrifluoroborates with 2-Chloroacetates and 2-Chloroacetamides. Organic Letters, 2013, 15, 3342-3345.	4.6	18
121	Nickel-Catalyzed Borylation of Halides and Pseudohalides with Tetrahydroxydiboron [B ₂ (OH) ₄]. Journal of Organic Chemistry, 2013, 78, 6427-6439.	3.2	111
122	Suzuki–Miyaura Cross-Coupling of Potassium Trifluoro(N-methylheteroaryl)borates with Aryl and Heteroaryl Halides. Journal of Organic Chemistry, 2013, 78, 6648-6656.	3.2	26
123	Pd-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions between Sulfamates and Potassium Boc-Protected Aminomethyltrifluoroborates. Organic Letters, 2013, 15, 2534-2537.	4.6	42
124	Synthesis of Trifluoromethylated Isoxazolidines: 1,3-Dipolar Cycloaddition of Nitrosoarenes, (Trifluoromethyl)diazomethane, and Alkenes. Organic Letters, 2013, 15, 3166-3169.	4.6	75
125	Synthesis and Suzuki–Miyaura Crossâ€Coupling of Enantioenriched Secondary Potassium βâ€Trifluoroboratoamides: Catalytic, Asymmetric Conjugate Addition of Bisboronic Acid and Tetrakis(dimethylamino)diboron to α,βâ€Unsaturated Carbonyl Compounds. Advanced Synthesis and Catalysis, 2013, 355, 3037-3057.	4.3	36
126	Oxidative Condensations To Form Benzimidazole-Substituted Potassium Organotrifluoroborates. Organic Letters, 2012, 14, 4242-4245.	4.6	40

#	Article	IF	Citations
127	Synthesis and Reactivity of Solid-Supported Organotrifluoroborates in Suzuki Cross-Coupling. Organic Letters, 2012, 14, 1680-1683.	4.6	16
128	Nitrosation of Aryl and Heteroaryltrifluoroborates with Nitrosonium Tetrafluoroborate. Journal of Organic Chemistry, 2012, 77, 4402-4413.	3.2	76
129	Palladium-Catalyzed Borylation of Aryl and Heteroaryl Halides Utilizing Tetrakis(dimethylamino)diboron: One Step Greener. Organic Letters, 2012, 14, 4814-4817.	4.6	41
130	Potassium Boc-Protected Secondary Aminomethyltrifluoroborates: Synthesis and Suzuki–Miyaura Cross-Coupling Reactions. Organic Letters, 2012, 14, 4458-4461.	4.6	29
131	Scope of the Two-Step, One-Pot Palladium-Catalyzed Borylation/Suzuki Cross-Coupling Reaction Utilizing Bis-Boronic Acid. Journal of Organic Chemistry, 2012, 77, 8678-8688.	3.2	105
132	Stereospecific Cross-Coupling of Secondary Organotrifluoroborates: Potassium 1-(Benzyloxy)alkyltrifluoroborates. Journal of the American Chemical Society, 2012, 134, 16856-16868.	13.7	178
133	Suzuki–Miyaura Cross-Coupling Reactions of Potassium Boc-Protected Aminomethyltrifluoroborate with Aryl and Hetaryl Mesylates. Organic Letters, 2012, 14, 3138-3141.	4.6	37
134	Rapid and Efficient Access to Secondary Arylmethylamines. Chemistry - A European Journal, 2012, 18, 9564-9570.	3.3	29
135	Scope of the Palladium-Catalyzed Aryl Borylation Utilizing Bis-Boronic Acid. Journal of the American Chemical Society, 2012, 134, 11667-11673.	13.7	127
136	Cross-Coupling of Mesylated Phenol Derivatives with Potassium Ammonio- and Amidomethyltrifluoroborates. Organic Letters, 2011, 13, 1242-1245.	4.6	38
137	Cross-Coupling of Mesylated Phenol Derivatives with Potassium Cyclopropyltrifluoroborate. Journal of Organic Chemistry, 2011, 76, 8126-8130.	3.2	28
138	Reinvestigation of Aminomethyltrifluoroborates and Their Application in Suzukiâ [*] Miyaura Cross-Coupling Reactions. Journal of Organic Chemistry, 2011, 76, 2762-2769.	3.2	39
139	Oxidation of Organotrifluoroborates via Oxone. Journal of Organic Chemistry, 2011, 76, 623-630.	3.2	121
140	Cross-Coupling of Mesylated Phenol Derivatives with Potassium Alkoxymethyltrifluoroborates. Organic Letters, 2011, 13, 3948-3951.	4.6	17
141	Metal-Free Chlorodeboronation of Organotrifluoroborates. Journal of Organic Chemistry, 2011, 76, 7195-7203.	3.2	70
142	Direct Alkylation of Heteroaryls Using Potassium Alkyl- and Alkoxymethyltrifluoroborates. Organic Letters, 2011, 13, 1852-1855.	4.6	259
143	Copper-Catalyzed \hat{l}^2 -Boration of \hat{l}_{\pm} , \hat{l}^2 -Unsaturated Carbonyl Compounds with Tetrahydroxydiborane. Organic Letters, 2011, 13, 4684-4687.	4.6	48
144	Synthesis and Suzuki–Miyaura Cross-Coupling Reactions of Potassium Boc-Protected Aminomethyltrifluoroborate with Aryl and Hetaryl Halides. Organic Letters, 2011, 13, 3956-3959.	4.6	53

#	Article	IF	Citations
145	Palladium-Catalyzed Hiyama Cross-Coupling of Aryltrifluorosilanes with Aryl and Heteroaryl Chlorides. Journal of Organic Chemistry, 2011, 76, 9182-9187.	3.2	42
146	Synthesis and Cross-Coupling of Sulfonamidomethyltrifluoroborates. Organic Letters, 2011, 13, 1694-1697.	4.6	38
147	Synthesis of the stereogenic triad of the halicyclamine A core. Tetrahedron Letters, 2011, 52, 2199-2202.	1.4	18
148	Palladium-Catalyzed, Direct Boronic Acid Synthesis from Aryl Chlorides: A Simplified Route to Diverse Boronate Ester Derivatives. Journal of the American Chemical Society, 2010, 132, 17701-17703.	13.7	253
149	Synthesis of Amidomethyltrifluoroborates and Their Use in Cross-Coupling Reactions. Organic Letters, 2010, 12, 4876-4879.	4.6	59
150	Nickel-Catalyzed Cross-Coupling of Potassium Aryl- and Heteroaryltrifluoroborates with Unactivated Alkyl Halides. Organic Letters, 2010, 12, 5783-5785.	4.6	48
151	Nickel-Catalyzed Câ^'O Activation of Phenol Derivatives with Potassium Heteroaryltrifluoroborates. Organic Letters, 2010, 12, 4022-4025.	4.6	122
152	Palladium-Catalyzed Suzukiâ^'Miyaura Cross-Coupling Reactions of Enantiomerically Enriched Potassium β-Trifluoroboratoamides with Various Aryl- and Hetaryl Chlorides. Organic Letters, 2010, 12, 4384-4387.	4.6	31
153	Stereospecific Cross-Coupling of Secondary Alkyl \hat{l}^2 -Trifluoroboratoamides. Journal of the American Chemical Society, 2010, 132, 17108-17110.	13.7	201
154	Synthesis of an Acyltrifluoroborate and Its Fusion with Azides To Form Amides. Journal of Organic Chemistry, 2010, 75, 4304-4306.	3.2	93
155	¹ H, ¹³ C, ¹⁹ F and ¹¹ B NMR spectral reference data of some potassium organotrifluoroborates. Magnetic Resonance in Chemistry, 2009, 47, 873-878.	1.9	43
156	Organotrifluoroborates and Monocoordinated Palladium Complexes as Catalysts—A Perfect Combination for Suzuki–Miyaura Coupling. Angewandte Chemie - International Edition, 2009, 48, 9240-9261.	13.8	400
157	Efficient Hydrolysis of Organotrifluoroborates via Silica Gel and Water. Journal of Organic Chemistry, 2009, 74, 7364-7369.	3.2	103
158	Utilization of Potassium Vinyltrifluoroborate in the Development of a 1,2-Dianion Equivalent. Organic Letters, 2009, 11, 2369-2372.	4.6	54
159	Scope of the Suzukiâ^'Miyaura Cross-Coupling Reactions of Potassium Heteroaryltrifluoroborates. Journal of Organic Chemistry, 2009, 74, 973-980.	3.2	224
160	Condensation Reactions To Form Oxazoline-Substituted Potassium Organotrifluoroborates. Organic Letters, 2009, 11, 3830-3833.	4.6	46
161	Scope of the Suzukiâ^'Miyaura Cross-Coupling Reaction of Potassium Trifluoroboratoketohomoenolates. Journal of Organic Chemistry, 2009, 74, 1297-1303.	3.2	51
162	Use of Potassium Î ² -Trifluoroborato Amides in Suzukiâ [^] 'Miyaura Cross-Coupling Reactions. Journal of Organic Chemistry, 2009, 74, 5446-5450.	3.2	43

#	Article	IF	Citations
163	Potassium trifluoroborate salts as convenient, stable reagents for difficult alkyl transfers. Current Opinion in Drug Discovery & Development, 2009, 12, 811-23.	1.9	18
164	Cross-Coupling of Cyclopropyl- and Cyclobutyltrifluoroborates with Aryl and Heteroaryl Chlorides. Journal of Organic Chemistry, 2008, 73, 7481-7485.	3.2	103
165	Orthogonal Reactivity in Boryl-Substituted Organotrifluoroborates. Journal of the American Chemical Society, 2008, 130, 15792-15793.	13.7	97
166	Functionalization of Organotrifluoroborates: Reductive Amination. Journal of Organic Chemistry, 2008, 73, 3885-3891.	3.2	44
167	Scope of Aminomethylations via Suzukiâ^'Miyaura Cross-Coupling of Organotrifluoroborates. Journal of Organic Chemistry, 2008, 73, 2052-2057.	3.2	74
168	Suzukiâ^'Miyaura Cross-Coupling of Potassium Trifluoroboratohomoenolates. Organic Letters, 2008, 10, 1795-1798.	4.6	75
169	Facile Synthesis of Highly Functionalized Ethyltrifluoroborates. Journal of Organic Chemistry, 2008, 73, 6000-6002.	3.2	25
170	Efficient Cross-Coupling of Secondary Alkyltrifluoroborates with Aryl Chlorides—Reaction Discovery Using Parallel Microscale Experimentation. Journal of the American Chemical Society, 2008, 130, 9257-9259.	13.7	235
171	Preparation of Potassium Alkoxymethyltrifluoroborates and Their Cross-Coupling with Aryl Chlorides. Organic Letters, 2008, 10, 2135-2138.	4.6	85
172	Highly Stereoselective Synthesis of <i>cis</i> -Alkenyl Pinacolboronates and Potassium <i>cis</i> -Alkenyltrifluoroborates via a Hydroboration/ Protodeboronation Approach. Journal of Organic Chemistry, 2008, 73, 6841-6844.	3.2	80
173	Preparation and Wittig Reactions of Organotrifluoroborato Phosphonium Ylides. Organic Letters, 2007, 9, 821-824.	4.6	52
174	Organotrifluoroborates:  Protected Boronic Acids That Expand the Versatility of the Suzuki Coupling Reaction. Accounts of Chemical Research, 2007, 40, 275-286.	15.6	857
175	Ozonolysis of Unsaturated Organotrifluoroborates. Journal of Organic Chemistry, 2007, 72, 3558-3560.	3.2	65
176	Aminomethylations via Cross-Coupling of Potassium Organotrifluoroborates with Aryl Bromides. Organic Letters, 2007, 9, 1597-1600.	4.6	76
177	Construction of Bicyclic Ring Systems via a Transannular Sml2-Mediated Ketoneâ^'Olefin Cyclization Strategy. Journal of Organic Chemistry, 2007, 72, 1755-1764.	3.2	22
178	Scope of the Suzukiâ^'Miyaura Aminoethylation Reaction Using Organotrifluoroborates. Journal of Organic Chemistry, 2007, 72, 8422-8426.	3.2	46
179	β-Aminoethyltrifluoroborates: Efficient Aminoethylations via Suzukiâ°'Miyaura Cross-Coupling. Organic Letters, 2007, 9, 203-206.	4.6	58
180	Synthesis of Unsaturated Organotrifluoroborates via Wittig and Hornerâ "Wadsworthâ" Emmons Olefination. Journal of Organic Chemistry, 2006, 71, 6135-6140.	3.2	91

#	Article	IF	Citations
181	Oxidation of Hydroxyl-Substituted Organotrifluoroborates. Journal of the American Chemical Society, 2006, 128, 9634-9635.	13.7	72
182	Suzukiâ^'Miyaura Cross-Coupling Reactions of Potassium Vinyltrifluoroborate with Aryl and Heteroaryl Electrophiles. Journal of Organic Chemistry, 2006, 71, 9681-9686.	3.2	147
183	Synthesis of Functionalized Organotrifluoroborates via the 1,3-Dipolar Cycloaddition of Azides. Organic Letters, 2006, 8, 2767-2770.	4.6	83
184	Linchpin Synthons:Â Metalation of Aryl Bromides Bearing a Potassium Trifluoroborate Moiety. Journal of Organic Chemistry, 2006, 71, 7491-7493.	3.2	70
185	Palladium(0)-Catalyzed Suzukiâ^'Miyaura Cross-Coupling Reactions of Potassium Aryl- and Heteroaryltrifluoroborates with Alkenyl Bromides. Journal of Organic Chemistry, 2006, 71, 5743-5747.	3.2	63
186	cis-Dihydroxylation of Unsaturated Potassium Alkyl- and Aryltrifluoroborates. Organic Letters, 2006, 8, 75-78.	4.6	78
187	Suzukiâ^'Miyaura Cross-Coupling Reactions of Benzyl Halides with Potassium Aryltrifluoroborates. Journal of Organic Chemistry, 2006, 71, 9198-9202.	3.2	162
188	A General Route toward the Synthesis of the Cladiellin Skeleton Utilizing a Sml2-Mediated Cyclization. Journal of Organic Chemistry, 2006, 71, 1172-1180.	3.2	25
189	Palladium(0)-Catalyzed Synthesis of Chiral Ene-allenes Using Alkenyl Trifluoroborates. Journal of Organic Chemistry, 2006, 71, 1563-1568.	3.2	90
190	Synthesis of Functionalized Organotrifluoroborates via Halomethyltrifluoroborates. Organic Letters, 2006, 8, 2031-2034.	4.6	92
191	One-Pot Synthesis of Trisubstituted Conjugated Dienes via Sequential Suzukiâ^'Miyaura Cross-Coupling with Alkenyl- and Alkyltrifluoroborates. Journal of Organic Chemistry, 2006, 71, 2493-2498.	3.2	91
192	Ketylâ^'Allene Cyclizations Promoted by Samarium(II) Iodide. Journal of Organic Chemistry, 2005, 70, 2622-2626.	3.2	57
193	Stereoselective Suzukiâ^'Miyaura Cross-Coupling Reactions of Potassium Alkenyltrifluoroborates with Alkenyl Bromides. Journal of Organic Chemistry, 2005, 70, 3950-3956.	3.2	146
194	Synthesis and Application of Chiral Cyclopropane-Based Ligands in Palladium-Catalyzed Allylic Alkylation. Journal of Organic Chemistry, 2004, 69, 8062-8069.	3.2	77
195	Formal Total Synthesis of Oximidine II via a Suzuki-Type Cross-Coupling Macrocyclization Employing Potassium Organotrifluoroborates. Journal of the American Chemical Society, 2004, 126, 10313-10318.	13.7	151
196	Toward a General Route to the Eunicellin Diterpenes:Â The Asymmetric Total Synthesis of Deacetoxyalcyonin Acetate. Journal of the American Chemical Society, 2004, 126, 1642-1643.	13.7	67
197	B-Alkyl Suzukiâ^'Miyaura Cross-Coupling Reactions with Air-Stable Potassium Alkyltrifluoroborates. Journal of Organic Chemistry, 2003, 68, 5534-5539.	3.2	152
198	Total Synthesis of (+)-lsoschizandrin Utilizing a Samarium(II) lodide-Promoted 8-Endo Ketylâ^'Olefin Cyclization. Journal of Organic Chemistry, 2003, 68, 9533-9540.	3.2	122

#	Article	IF	Citations
199	Determining the Scope of the Organolanthanide-Catalyzed, Sequential Intramolecular Amination/Cyclization Reaction:  Formation of Substituted Quinolizidines, Indolizidines, and Pyrrolizidines. Journal of Organic Chemistry, 2003, 68, 9214-9220.	3.2	52
200	Palladium-Catalyzed Suzukiâ^'Miyaura Cross-Coupling Reactions of Potassium Aryl- and Heteroaryltrifluoroborates. Journal of Organic Chemistry, 2003, 68, 4302-4314.	3.2	389
201	Improved Synthesis of Potassium (Trifluoromethyl)trifluoroborate [K(CF3BF3)]. Organometallics, 2003, 22, 3313-3315.	2.3	36
202	Efficient Ligandless Palladium-Catalyzed Suzuki Reactions of Potassium Aryltrifluoroborates. Organic Letters, 2002, 4, 1867-1870.	4.6	160
203	Suzuki Cross-Coupling Reactions of Potassium Alkenyltrifluoroboratesâ€. Organic Letters, 2002, 4, 107-109.	4.6	224
204	Development of the Suzukiâ^'Miyaura Cross-Coupling Reaction:Â Use of Air-Stable Potassium Alkynyltrifluoroborates in Aryl Alkynylations. Journal of Organic Chemistry, 2002, 67, 8416-8423.	3.2	197
205	Suzukiâ ⁻ 'Miyaura Cross-Coupling Reactions of Potassium Alkenyltrifluoroborates. Journal of Organic Chemistry, 2002, 67, 8424-8429.	3.2	170
206	Lanthanocene Catalysts in Selective Organic Synthesis. Chemical Reviews, 2002, 102, 2161-2186.	47.7	491
207	Samarium(II) Iodide-Mediated Intramolecular Conjugate Additions of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Lactones. Journal of Organic Chemistry, 2002, 67, 3861-3865.	3.2	56
208	Sequenced Reactions with Samarium(II) Iodide. Sequential Intramolecular Reformatsky/Nucleophilic Acyl Substitution Reactions for the Synthesis of Medium-Sized Carbocycles. Journal of Organic Chemistry, 2002, 67, 3459-3463.	3.2	40
209	A Diastereoselective Intramolecular Hydroamination Approach to the Syntheses of (+)-, $(\hat{A}\pm)$ -, and (\hat{a}^2) -Pinidinol. Journal of Organic Chemistry, 2001, 66, 4344-4347.	3.2	84
210	Sequenced Reactions with Samarium(II) Iodide. Sequential Intramolecular Barbier Cyclization/Grob Fragmentation for the Synthesis of Medium-Sized Carbocycles. Journal of Organic Chemistry, 2001, 66, 4511-4516.	3.2	76
211	Cross-Coupling Reactions of Potassium Alkyltrifluoroborates with Aryl and 1-Alkenyl Trifluoromethanesulfonates. Organic Letters, 2001, 3, 393-396.	4.6	203
212	Gary A. Molander. Pure and Applied Chemistry, 2000, 72, 1757-1761.	1.9	5
213	Development of a Protocol for Eight- and Nine-Membered Ring Synthesis in the Annulation of sp2,sp3-Hybridized Organic Dihalides with Keto Esters. Journal of Organic Chemistry, 2000, 65, 8333-8339.	3.2	39
214	Hetero Dielsâ^'Alder Reactions Catalyzed by the Metallocenium Complex [Cp*2Ce][BPh4]. Journal of Organic Chemistry, 2000, 65, 1215-1217.	3.2	27
215	Diverse Methods for Medium Ring Synthesis. Accounts of Chemical Research, 1998, 31, 603-609.	15.6	334
216	Neutral alkylations via palladium(0) catalysis. Journal of the American Chemical Society, 1981, 103, 5969-5972.	13.7	234