List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578930/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Use of an optimised enzyme/prodrug combination for Clostridia directed enzyme prodrug therapy induces a significant growth delay in necrotic tumours. Cancer Gene Therapy, 2022, 29, 178-188.	2.2	9
2	A review in radiomics: Making personalized medicine a reality via routine imaging. Medicinal Research Reviews, 2022, 42, 426-440.	5.0	103
3	Efficient Secretion of Murine IL-2 From an Attenuated Strain of Clostridium sporogenes, a Novel Delivery Vehicle for Cancer Immunotherapy. Frontiers in Microbiology, 2021, 12, 669488.	1.5	10
4	Deciphering the glioblastoma phenotype by computed tomography radiomics. Radiotherapy and Oncology, 2021, 160, 132-139.	0.3	9
5	Privacy preserving distributed learning classifiers – Sequential learning with small sets of data. Computers in Biology and Medicine, 2021, 136, 104716.	3.9	12
6	<i>E. coli</i> nitroreductase NfsA is a reporter gene for non-invasive PET imaging in cancer gene therapy applications. Theranostics, 2020, 10, 10548-10562.	4.6	15
7	Privacy-preserving distributed learning of radiomics to predict overall survival and HPV status in head and neck cancer. Scientific Reports, 2020, 10, 4542.	1.6	46
8	Development and validation of a radiomic signature to predict HPV (p16) status from standard CT imaging: a multicenter study. British Journal of Radiology, 2018, 91, 20170498.	1.0	109
9	A prediction model for early death in non-small cell lung cancer patients following curative-intent chemoradiotherapy. Acta Oncológica, 2018, 57, 226-230.	0.8	35
10	A Deep Look Into the Future of Quantitative Imaging in Oncology: A Statement of Working Principles and Proposal for Change. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1074-1082.	0.4	86
11	Individualized early death and long-term survival prediction after stereotactic radiosurgery for brain metastases of non-small cell lung cancer: Two externally validated nomograms. Radiotherapy and Oncology, 2017, 123, 189-194.	0.3	29
12	Developing and Validating a Survival Prediction Model for NSCLC Patients Through Distributed Learning Across 3 Countries. International Journal of Radiation Oncology Biology Physics, 2017, 99, 344-352.	0.4	102
13	Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. British Journal of Radiology, 2017, 90, 20160665.	1.0	270
14	Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology, 2017, 14, 749-762.	12.5	3,216
15	Predicting tumor hypoxia in non-small cell lung cancer by combining CT, FDG PET and dynamic contrast-enhanced CT. Acta Oncológica, 2017, 56, 1591-1596.	0.8	15
16	Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thicknesses: a comprehensive phantom study. Acta Oncológica, 2017, 56, 1544-1553.	0.8	183
17	Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT. Clinical and Translational Radiation Oncology, 2017, 4, 24-31.	0.9	98
18	Post-radiochemotherapy PET radiomics in head and neck cancer – The influence of radiomics implementation on the reproducibility of local control tumor models. Radiotherapy and Oncology, 2017, 125, 385-391.	0.3	89

#	Article	IF	CITATIONS
19	Advancing Clostridia to Clinical Trial: Past Lessons and Recent Progress. Cancers, 2016, 8, 63.	1.7	28
20	Distributed learning: Developing a predictive model based on data from multiple hospitals without data leaving the hospital – A real life proof of concept. Radiotherapy and Oncology, 2016, 121, 459-467.	0.3	139
21	Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer. Frontiers in Oncology, 2015, 5, 272.	1.3	318
22	A Comparative Study of the Hypoxia PET Tracers [18F]HX4, [18F]FAZA, and [18F]FMISO in a Preclinical Tumor Model. International Journal of Radiation Oncology Biology Physics, 2015, 91, 351-359.	0.4	139
23	Radiotherapy Combined with the Immunocytokine L19-IL2 Provides Long-lasting Antitumor Effects. Clinical Cancer Research, 2015, 21, 1151-1160.	3.2	79
24	Modern clinical research: How rapid learning health care and cohort multiple randomised clinical trials complement traditional evidence based medicine. Acta Oncológica, 2015, 54, 1289-1300.	0.8	59
25	â€~Rapid Learning health care in oncology' – An approach towards decision support systems enabling customised radiotherapy'. Radiotherapy and Oncology, 2013, 109, 159-164.	0.3	175
26	Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer, 2012, 48, 441-446.	1.3	3,846
27	Secretory production of biologically active rat interleukin-2 byClostridium acetobutylicumDSM792 as a tool for anti-tumor treatment. FEMS Microbiology Letters, 2005, 246, 67-73.	0.7	69
28	Improvement ofClostridiumtumour targeting vectors evaluated in rat rhabdomyosarcomas. FEMS Immunology and Medical Microbiology, 2001, 30, 37-41.	2.7	43
29	Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Therapy, 2001, 8, 294-297.	2.2	97