Alexander Urban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9578928/publications.pdf

Version: 2024-02-01

236612 315357 5,183 39 25 38 citations h-index g-index papers 39 39 39 5489 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stackingâ€Fault Enhanced Oxygen Redox in Li ₂ MnO ₃ . Advanced Energy Materials, 2022, 12, .	10.2	17
2	Data-driven approach to parameterize <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>SCAN</mml:mi><mml:mo>+</mml:mo><mml:r <mml:math="" accurate="" an="" description="" for="" of="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>3</mml:mn><mml:mi>d<td>0.9</td><td>6</td></mml:mi></mml:mrow></mml:r></mml:math>	0.9	6
3	Understanding the Onset of Surface Degradation in LiNiO ₂ Cathodes. ACS Applied Energy Materials, 2022, 5, 5730-5741.	2.5	10
4	Accelerated Atomistic Modeling of Solid-State Battery Materials With Machine Learning. Frontiers in Energy Research, 2021, 9, .	1.2	25
5	Strategies for the construction of machine-learning potentials for accurate and efficient atomic-scale simulations. Machine Learning: Science and Technology, 2021, 2, 031001.	2.4	42
6	Anisotropic to Isotropic Transition in Monolayer Group-IV Tellurides. Materials, 2021, 14, 4495.	1.3	4
7	Realizing continuous cation order-to-disorder tuning in a class of high-energy spinel-type Li-ion cathodes. Matter, 2021, 4, 3897-3916.	5.0	32
8	Augmenting zero-Kelvin quantum mechanics with machine learning for the prediction of chemical reactions at high temperatures. Nature Communications, 2021, 12, 7012.	5.8	10
9	Effect of fluorination and Li-excess on the Li migration barrier in Mn-based cathode materials. Journal of Materials Chemistry A, 2020, 8, 19965-19974.	5.2	20
10	Potential and pH Dependence of the Buried Interface of Membrane-Coated Electrocatalysts. ACS Applied Materials & Dependence, 2020, 12, 52125-52135.	4.0	2
11	Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nature Energy, 2020, 5, 213-221.	19.8	158
12	Understanding the Origin of Higher Capacity for Ni-Based Disordered Rock-Salt Cathodes. Chemistry of Materials, 2020, 32, 3447-3461.	3.2	16
13	Effect of Fluorination on Lithium Transport and Shortâ€Range Order in Disorderedâ€Rocksaltâ€Type Lithiumâ€lon Battery Cathodes. Advanced Energy Materials, 2020, 10, 1903240.	10.2	83
14	Efficient training of ANN potentials by including atomic forces via Taylor expansion and application to water and a transition-metal oxide. Npj Computational Materials, 2020, 6, .	3.5	40
15	Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries. Nature Communications, 2019, 10, 592.	5.8	162
16	Constructing first-principles phase diagrams of amorphous Li <i>x</i> Si using machine-learning-assisted sampling with an evolutionary algorithm. Journal of Chemical Physics, 2018, 148, 241711.	1.2	121
17	Stoichiometric Layered Potassium Transition Metal Oxide for Rechargeable Potassium Batteries. Chemistry of Materials, 2018, 30, 6532-6539.	3.2	108
18	Electronic-Structure Origin of Cation Disorder in Transition-Metal Oxides. Physical Review Letters, 2017, 119, 176402.	2.9	135

#	Article	IF	CITATIONS
19	Influence of Inversion on Mg Mobility and Electrochemistry in Spinels. Chemistry of Materials, 2017, 29, 7918-7930.	3.2	75
20	First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials. Chemistry of Materials, 2017, 29, 7840-7851.	3.2	79
21	Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species. Physical Review B, 2017, 96, .	1.1	228
22	Construction of ground-state preserving sparse lattice models for predictive materials simulations. Npj Computational Materials, 2017, 3, .	3.5	15
23	Computational Design and Preparation of Cationâ€Disordered Oxides for Highâ€Energyâ€Density Liâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1600488.	10.2	93
24	The Effect of Cation Disorder on the Average Li Intercalation Voltage of Transition-Metal Oxides. Chemistry of Materials, 2016, 28, 3659-3665.	3.2	62
25	Lithium Batteries: Computational Design and Preparation of Cation-Disordered Oxides for High-Energy-Density Li-lon Batteries (Adv. Energy Mater. 15/2016). Advanced Energy Materials, 2016, 6, .	10.2	0
26	Understanding the Effect of Cation Disorder on the Voltage Profile of Lithium Transition-Metal Oxides. Chemistry of Materials, 2016, 28, 5373-5383.	3.2	79
27	Computational understanding of Li-ion batteries. Npj Computational Materials, 2016, 2, .	3.5	411
28	Finding and proving the exact ground state of a generalized Ising model by convex optimization and MAX-SAT. Physical Review B, 2016, 94, .	1.1	25
29	The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nature Chemistry, 2016, 8, 692-697.	6.6	1,022
30	An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2. Computational Materials Science, 2016, 114, 135-150.	1.4	377
31	Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: Accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides. Physical Review B, 2015, 92, .	1.1	126
32	The Intercalation Phase Diagram of Mg in V ₂ O ₅ from First-Principles. Chemistry of Materials, 2015, 27, 3733-3742.	3.2	130
33	A disordered rock-salt Li-excess cathode material with high capacity and substantial oxygen redox activity: Li 1.25 Nb 0.25 Mn 0.5 O 2. Electrochemistry Communications, 2015, 60, 70-73.	2.3	145
34	Designing New Lithium-Excess Cathode Materials from Percolation Theory: Nanohighways in Li _{<i>x</i>} Ni _{2â€"4<i>x</i>/3} Sb _{<i>x</i>/3} O ₂ . Nano Letters, 2015, 15, 596-602.	4.5	54
35	Electrodes: The Configurational Space of Rocksalt-Type Oxides for High-Capacity Lithium Battery Electrodes (Adv. Energy Mater. 13/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	10.2	3
36	The Configurational Space of Rocksaltâ€Type Oxides for Highâ€Capacity Lithium Battery Electrodes. Advanced Energy Materials, 2014, 4, 1400478.	10.2	256

ALEXANDER URBAN

#	Article	IF	CITATIONS
37	Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries. Science, 2014, 343, 519-522.	6.0	943
38	Growth of One-Dimensional Pd Nanowires on the Terraces of a ReducedSnO2(101)Surface. Physical Review Letters, 2007, 98, 186102.	2.9	16
39	Tuning the Reactivity of Oxide Surfaces by Chargeâ€Accepting Adsorbates. Angewandte Chemie - International Edition, 2007, 46, 7315-7318.	7.2	53